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We develop an effective-field formalism that is suitable for describing nonlinear interactions of multiple
wave packets in photonic crystals of arbitrary dimensionality. The theory is valid for “high-contrast” variations
of the refractive index in the photonic crystal, provided dispersion and absorption effects can be neglected; it
is based on a Hamiltonian formulation of the underlying Maxwell equations. We show that the dynamical
equations for the effective fields are similar to those commonly used in nonlinear optics of homogeneous
media, but with coefficients determined from the photonic band structure. We can introduce an effective energy
density and an effective Poynting vector, expressed in terms of the effective fields, that satisfy a continuity
equation. We illustrate our approach with a solution of the problem of degenerate optical parametric amplifi-
cation in the undepleted pump approximation, and by considering the linear electro-optic effect as a quadratic
nonlinear optical process.
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I. INTRODUCTION

Photonic crystals[1,2] provide new opportunities for en-
hancing and controlling nonlinear optical processes, such as
second-harmonic generation, optical parametric amplifica-
tion, and self- and cross-phase modulation. In the past few
decades different theoretical approaches have been devel-
oped for describing nonlinear processes in “low contrast”
periodic materials[3], where there is only a small variation
in the linear refractive index, usually with a focus on one-
dimensional periodic waveguide structures. These traditional
approaches are not appropriate for the kind of “high-
contrast” variations in the linear optical properties that are
typical of two- and three-dimensional photonic crystals. A
straightforward multiple-scales analysis based on slowly-
varying amplitudes introduced for the different Bloch func-
tions can be applied to such problems, but it is often cum-
bersome[4]. Recently, an effective-fields formalism has been
proposed, based on a Hamiltonian formulation of the under-
lying dynamics of the electromagnetic field[5,6]. This ap-
proach is applicable to high-contrast structures, and yet less
awkward than the earlier multiple-scales analyses. We dem-
onstrate that an extension of this effective-fields formalism
allows us to describe different wave mixing processes in
high-contrast photonic crystals in a convenient and intuitive
way.

In the effective-fields formalism, wave packets in a pho-
tonic crystal are comprised of Bloch functions in the same
photonic band with close wave-vector indices; the contribu-
tions of the different Bloch functions to a wave packet are
described by a slowly varying function of the wave-vector
index. The effective field is the Fourier transform of this
wave-vector function, which is a slowly varying function of
the spatial coordinates. The effective fields give an “aver-
aged” description for the electromagnetic field in a periodic
medium; in terms of them expressions for the average energy
density and Poynting vector can be given. In this paper, we
show that the dynamical equations for the effective fields are

similar to those commonly used in nonlinear optics of homo-
geneous media, but with coefficients determined from the
photonic band structure. In contrast, if one introduces wave
packets in photonic crystalsvia a slowly varying envelope
function that multiplies a Bloch-function “carrier” wave, the
corresponding dynamical equations[4] are much harder to
obtain [7].

In Sec. II we introduce the basic equations and the nota-
tion that we will use further in the article. We assume that the
dielectric media comprising the photonic crystal are nondis-
persive, nonmagnetic and without absorption. When writing
down the dynamical equations, we use a Hamiltonian ap-
proach that not only simplifies our formulas, but allows us to
quantize the problem easily, and to find conserved quantities
and investigate their relation to symmetries. In the constitu-
tive relations and dynamical equations for the electromag-
netic field we treat the electric displacement fieldDsr ,td and
the magnetic fieldBsr ,td as our fundamental fields, since
their exact transversality can be automatically guaranteed.
The strength of this choice of the fundamental fields was first
pointed out by Born and Infeld[8] and discussed in more
detail in [9]; a helpful review of different approaches to ca-
nonical quantization in light propagation problems can be
found in [10]. We introduce Bloch eigenmodes of the photo-
nic crystal[1], and write down the dynamical equations for
the coefficients of the Bloch-mode expansion of the electric
field Dsr ,td. For simplicity, we limit ourselves to considering
only the quadratic optical nonlinearity, and we use negative
band indices to make our notation suitable for simultaneous
description of the field-expansion coefficients and their
complex-(or Hermitian-) conjugated counterparts.

Section III, where we present a step-by-step introduction
of the effective-fields formalism for multiple wave-packets
interaction, contains the main result of our article. We start
with defining wave packets for a convenient description of
nonlinear wave-mixing processes and deriving the corre-
sponding dynamical equations. We have to generalize the
definition of the wave packet used in[6] to allow for mul-
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tiple wave packets in the same photonic band; it leads to a
modified Poisson bracket that is no longer canonical, but still
is almost as convenient to use. Then we introduce the effec-
tive fields and derive the dynamical equation for them. We
also obtain a continuity equation for the effective energy
density and the effective Poynting vector, which connects the
effective fields with wave-packet intensities.

To demonstrate the approach in some detail, in Sec. IV we
apply our formalism to solving two simple problems of non-
linear optical interaction in a photonic crystal with a nonva-
nishing quadratic susceptibility. First, we consider degener-
ate optical parametric amplification in the simplest case of
plane-wave geometry and undepleted pump approximation.
Not unexpectedly, the lowest order approximation of our
treatment agrees with the result of a moread hocperturba-
tion theory. Next, we show that the effective-fields formalism
is also applicable for describing the linear electro-optic ef-
fect, that we treated as a second-order nonlinear process,
with one of the interacting wave packets being the constant
electric field applied to the photonic crystal. The advantage
of such a description over a simple modification of the re-
fractive index according to the constant electric field and
subsequent finding of “shifted” Bloch functions is that we
can also describe the effect with the electric field being non-
uniform (slowly varying) in space(or time). We present our
conclusions in Sec. V.

II. BASIC EQUATIONS

A. Constitutive relations

The constitutive relations in a nonmagnetic medium are
usually written as

Dsr,td = «0Esr,td + Psr,td, s1d

Bsr,td = m0Hsr,td, s2d

where the polarization of the mediumPsr ,td depends on the
electric fieldEsr ,td, in general in a nonlocal way. Contrary to
this approach, we useDsr ,td and Bsr ,td, rather thanEsr ,td
andHsr ,td, as independent dynamical variables[8]. Thus we
reverse the constitutive relations to expressEsr ,td andPsr ,td
in terms ofDsr ,td andHsr ,td in terms ofBsr ,td; the latter is,
of course, trivial. We further assume that the polarization
Psr ,td only depends locally onDsr ,td, in both space and
time. This implies that we are far from any resonant frequen-
cies of the material, and that any absorption is negligible.
Further assuming that the linear optical response is isotropic,
we can separatePsr ,td into linear and nonlinear parts as

Psr,td =
n2srd − 1

n2srd
Dsr,td + PNLsr,td, s3d

so in the linear limit the commonly used relation between
Dsr ,td andEsr ,td becomes simply

Dsr,td = «0n
2srdEsr,td, s4d

wherensrd is then identified as the refractive index, which
we take to be real. The nonlinear polarization is represented
as a power series inDsr ,td:

PNL
i sr,td = G2

i jl srdDjsr,tdDlsr,td

+ G3
i jlmsrdDjsr,tdDlsr,tdDmsr,td + ¯ . s5d

This tensor expression implies summation over the repeating
Cartesian indices, that we will generally denote as
i , j , l ,m, writing them as superscripts. The nonlinear
“D-susceptibilities” are symmetric with respect to the permu-
tation of any of their Cartesian indices. This “full permuta-
tion symmetry”[12,13] follows because of the non-resonant
character of the nonlinear optical interaction.

It is customary to expressPsr ,td in terms ofEsr ,td rather
thanDsr ,td according to the following formula:

Pisr,td = «0hfn2srd − 1gEisr,td + xi jl
s2dsrdEjsr,tdElsr,td

+ xi jlm
s3d srdEjsr,tdElsr,tdEmsr,td + ¯ j. s6d

The relations between the susceptibilitiesGJnsrd and the “tra-
ditional” susceptibilitiesxJ sndsrd are obtained by substituting
Eqs. (1) and (6) into Eqs. (3) and (5) and comparing the
coefficients of different powers ofE in the resulting expres-
sion with those in Eq.(6). This gives us the following rela-
tions:

G2
i jl srd =

xi jl
s2dsrd

«0n
6srd

, s7d

G3
i jlmsrd =

1

«0
2n8srd

Fxi jlm
s3d srd −

2

n2srd
xi jq

s2dsrdxqlm
s2d srdG . s8d

B. Hamiltonian formalism for the electromagnetic field

A Hamiltonian that gives the dynamical equations for the
electromagnetic field is

H = H0 + HNL, s9d

whereH0 describes the linear optical response,

H0 =E dr
Dsr,td ·Dsr,td

2«0n
2srd

+E dr
Bsr,td ·Bsr,td

2m0
, s10d

andHNL describes nonlinear effects,

HNL = −
1

3«0
E drG2

i jl srdDisr,tdDjsr,tdDlsr,td

−
1

4«0
E drG3

i jlmsrdDisr,tdDjsr,tdDlsr,tdDmsr,td + ¯ .

s11d

The HamiltonianH is equal to the total energy of the elec-
tromagnetic field.

The fieldsDsr ,td and Bsr ,td are transverse even in the
presence of nonlinear interactions, which allows us to leave
out all unphysical solutions by restricting our dynamical
space to transverse functions. This ease in dealing with the
transversality conditions onDsr ,td and Bsr ,td is the reason
for our somewhat unusual choice of them as our field vari-
ables.
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When used with the Hamiltonian(9), the Poisson brackets
for Dsr ,td andBsr ,td that give the correct dynamical equa-
tions are[8]

fDisr,td,Djsr8,tdg = 0, s12d

fBisr,td,Bjsr8,tdg = 0, s13d

fDisr,td,Bjsr8,tdg = − i"ei jl ]

]r l dsr − r8d, s14d

whereei jl is the unit antisymmetric Levi-Civita tensor. Here
and below we use a notation for the Poisson bracket,

1

i"
f. . ., . . .g ; h. . ., . . .j, s15d

that emphasizes the similarity of the classical equations to
their quantum counterparts. With the choice of Eqs.
(12)–(14), the usual Hamilton’s equations,

]

]t
Dsr,td =

1

i"
fDsr,td,Hg, s16d

]

]t
Bsr,td =

1

i"
fBsr,td,Hg, s17d

lead to the dynamical equations forDsr ,td andBsr ,td, which
are simply the two vector Maxwell equations in a dielectric
medium.

C. Bloch modes and their properties

In a photonic crystal all material properties are periodic
functions of r; for example, nsrd=nsr +Rd, G2

i jl srd=G2
i jl sr

+Rd, etc., whereR is an arbitrary lattice vector of the pho-
tonic crystal. In the following, we consider 3D photonic
crystals, but, unless otherwise noted, all formulas are quite
general and applicable with minor obvious modifications to
2D and 1D photonic crystals; the notational differences have
been discussed earlier[6].

The linearized dynamical equations forDsr ,td andBsr ,td
are obtained by neglecting the nonlinear polarization of the
medium PNLsr ,td in the two Maxwell equations written in
terms ofDsr ,td andBsr ,td:

]

]t
Dsr,td =

1

m0
= 3 Bsr,td, s18d

]

]t
Bsr,td = −

1

«0
= 3 SDsr,td

n2srd
D . s19d

Their stationary solutions take the form

Dsr,td = Dnksrdexps− ivnktd, s20d

Bsr,td = Bnksrdexps− ivnktd, s21d

wherevnk is the eigenfrequency corresponding to the pair of
spatial field eigenmodes(Dnksrd ,Bnksrd). Physical fields are

always real, and they contain these eigenmodes in complex-
conjugated pairs. For the moment we restrict ourselves to
positivevnk, and take the photonic band indexn to run only
over positive integers; we will generalize this below.

According to Bloch’s theorem,Dnksrd and Bnksrd (often
referred to as Bloch functions or Bloch modes) can be writ-
ten as

Dnksrd =
1

Î8p3
dnksrdexpsik · rd, s22d

Bnksrd =
1

Î8p3
bnksrdexpsik · rd, s23d

wherednksrd andbnksrd are periodic functions ofr,

dnksrd = dnksr + Rd, s24d

bnksrd = bnksr + Rd, s25d

with R an arbitrary lattice vector of the photonic crystal. The
factor of 1/Î8p3 is introduced for further convenience; it is
specific to the 3D case, and different factors would be more
useful in 1D and 2D problems(see[6]); k is a wave-vector
index that varies continuously and is restricted to the first
Brillouin zone, which we denote asVB. Subsequently, all
k-dependent quantities are only defined forkPVB unless
otherwise noted.

Finding the modesDnksrd and Bnksrd is straightforward
and easily done numerically using established algorithms;
programs implementing them are readily available[11]. Note
that theDnksrd modes are connected to the more commonly
usedEnksrd modes by a simple relation:

«0n
2srdEnksrd = Dnksrd. s26d

All the Dnksrd and Bnksrd are naturally transverse, so they
form a convenient basis set for the transverse fieldsDsr ,td
andBsr ,td.

The linearized dynamical field equations(18) and (19)
possess important symmetries that follow from the time-
reversal symmetry of the Maxwell equations. In particular,

vns−kd = vnk, s27d

which implies that the first Brillouin zoneVB has center-of-
inversion symmetry, whether the photonic crystal itself does
or does not have that symmetry. It also follows that we can
choose the eigensolutions[6] such that they satisfy

Dns−kdsrd = Dnk
* srd, s28d

Bns−kdsrd = − Bnk
* srd. s29d

Corresponding symmetries apply todnksrd and bnksrd. Of
course, additional mode symmetries may arise due to rota-
tional and reflection symmetries of the photonic-crystal lat-
tice.

The magnitudes of the spatial field eigenmodesDnksrd
andBnksrd can be chosen[6] so that
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E dr
Dnk

* srd ·Dn8k8srd

«0n
2srd

=
"vnk

2
dnn8dsk − k8d, s30d

E dr
Bnk

* srd ·Bn8k8srd

m0
=

"vnk

2
dnn8dsk − k8d, s31d

where the integrations are performed over an infinite volume
and the factors appearing on the right-hand side are set for
convenience. We consider the left-hand sides of Eqs.(30)
and(31) as the scalar products in the spaces of modesDnksrd
andBnksrd, respectively. Thus these equations constitute the
orthonormality conditions for the modes. The orthogonality
of modes corresponding to different frequenciesvnk follows
from the Hermiticity(with respect to the scalar products just
defined) of the operators that act onDnksrd and Bnksrd in
wave equations that can be derived from Eqs.(18) and (19)
for each of those fields[6]. Thus it is only degenerate modes
that, by the choice of their form, must be explicitly orthogo-
nalized.

We now generalize this notation by introducing a band
index n that accepts both positive and negative integer val-
ues, so that

vs−ndk ; − vns−kd. s32d

The corresponding modes with negative index are defined
according to

Ds−ndksrd ; Dns−kd
* srd, s33d

Bs−ndksrd ; Bns−kd
* srd, s34d

and it is easy to confirm that these negative-index solutions,
when used in Eqs.(20) and (21), also satisfy Eqs.(18) and
(19).

These symmetries of the spatial field modes and the intro-
duction of bands with negative indices are illustrated by Fig.
1. The use of these negative-index solutions will consider-
ably simplify our notation below. Taking into account the
symmetries expressed by Eqs.(28) and (29) and the defini-
tions of the modes with negative band indices(33) and(34),
we conclude thatDs−ndksrd is the same asDnksrd, and
Bs−ndksrd is the same as −Bnksrd, that is, only a half of all
Dnksrd and a half of allBnksrd are independent. Still, the pairs
of modes(Ds−ndksrd ,Bs−ndksrd) and(Dnksrd ,Bnksrd) are differ-
ent, so we can say that all pairs of spatial field modes are
independent, and they satisfy the following generalized or-
thogonality relation,

E drHDnk
* srd ·Dn8k8srd

«0n
2srd

+
Bnk

* srd ·Bn8k8srd

m0
J

= "uvnkudnn8dsk − k8d, s35d

in which n and n8 can accept both positive and negative
values. This orthogonality relation for pairs(Dnksrd ,Bnksrd)
can be obtained from(and is equivalent to) the two separate
orthogonality relations forDnksrd and Bnksrd, restricted to
positiven only.

D. Field dynamics in terms of the mode-expansion coefficients

We can expandDsr ,td and Bsr ,td in the positive-index
Bloch modesDnksrd andBnksrd [6] according to

Dsr,td = o
n.0

E
VB

dkfankstdDnksrd + ank
† stdDnk

* srdg, s36d

Bsr,td = o
n.0

E
VB

dkfankstdBnksrd + ank
† stdBnk

* srdg, s37d

where in a quantum problem the mode-expansion coeffi-
cientsankstd andank

† std are the annihilation and creation op-
erators for photons in the bandn with the wave vectork; in
a classical problem they are appropriate combination of the
canonical coordinate and momentum associated with each
mode. We adopt the quantum notation, in whichank

† std is the
Hermitian conjugate ofankstd; in a classical problem we take
ank

† std to meanank
* std.

The Poisson bracket forankstd is obtained from the Pois-
son brackets forDsr ,td andBsr ,td (12)–(14) using the com-
pleteness of the basis sets formed by the Bloch modesDnksrd
andBnksrd; we find

fankstd,an8k8
† stdg = dnn8dsk − k8d s38d

(see also[6]). This is the usual Poisson bracket for these
variables in a classical problem, or the commutation relation
for these operators in a quantum problem.

FIG. 1. Symmetries of the spatial field modes(Dnksrd ,Bnksrd),
illustrated for a 1D photonic crystal, that originate from the time-
reversal symmetry of the Maxwell equations. The negative-index
photonic bands(dashed lines) are mirror-symmetric to the positive-
index bands(solid lines) with respect to thek axis.
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It is convenient to introduce dynamical variablescnkstd
that give us simpler mode expansion formulas for the fields.
We define thecnkstd for both positive and negative band in-
dicesn,

cnkstd ; H ankstd, for n . 0,

as−nds−kd
† std, for n , 0.J s39d

Thus, only half of all thecnkstd are independent dynamical
variables.

The mode expansion of the electromagnetic fields in
terms ofcnkstd takes the compact form,

Dsr,td = o
n
E

VB

dkcnkstdDnksrd, s40d

Bsr,td = o
n
E

VB

dkcnkstdBnksrd, s41d

where the summations are performed over both positive and
negative band indicesn. We find such simple mode expan-
sion formulas because the pairs of spatial field eigenmodes
(Dnksrd ,Bnksrd) form a complete basis set in our dynamical
space of all pairs of transverse fields(Dsr ,td ,Bsr ,td), taken
at a given timet. The field expansion coefficientscnkstd can
be expressed in terms of the fields and Bloch modes,

cnkstd =
1

"uvnku E drHDnk
* srd ·Dsr,td

«0n
2srd

+
Bnk

* srd ·Bsr,td
m0

J
s42d

[cf. Eq. (35)]. Poisson brackets for thecnkstd immediately
follow from Eqs.(39) and (38); we find

fcnkstd,cs−n8ds−k8dstdg = sgnsnddnn8dsk − k8d. s43d

Poisson brackets involvingcnkstd and cn8k8
† std follow from

this and from the fact thatcnk
† std;cs−nds−kdstd (39), but we

will not need to refer to thecnk
† std explicitly.

The part of the Hamiltonian describing linear dynamics
[Eq. (10)] has a simple harmonic form in terms of either the
ankstd or thecnkstd,

H0 = o
n.0

E
VB

dk"vnkank
† stdankstd

= o
n
E

VB

dk
"uvnku

2
cs−nds−kdstdcnkstd, s44d

which follows from Eqs.(40), (41), and(35). The nonlinear
part of the HamiltonianHNL, on the other hand, is much
more conveniently expressed in terms of thecnkstd. Thus we
will use thecnkstd as the dynamical variables in the formulas
to follow. The part ofHNL that is third-order incnkstd [the
first term in Eq.(11)] is

Hs2d = −
"

3Î8p2 o
nn8n9

E
VB

dk8E
VB

dk9Gnn8n9
s2d sk8,k9d

3cnd−k8−k9estdcn8k8stdcn9k9std, s45d

where dke denotes a “zone-wrapped” wave vectork, that is,
the wave vector in the first Brillouin zoneVB that corre-
sponds to some arbitrary wave vectork,

dke ; k − Gk, such that

dke P VB, ∀ k, s46d

with Gk being one of the vectors of the reciprocal lattice,
including0. In deriving Eq.(45), we have used the discrete-
Fourier-transform formula

o
R

exps− ik ·Rd =
8p3

Vcell
o
G

dsk + Gd, s47d

where Vcell is the volume of the unit cell of the photonic
crystal, the summations are performed over all lattice vectors
R and all reciprocal vectorsG of the photonic crystal, and we
have defined

Gnn8n9
s2d sk8,k9d

;
1

"«0
E

Vcell

dr

Vcell
G2

i jl srddnd−k8−k9e
i srddn8k8

j srddn9k9
l srd

3 expfisk8 + k9 − dk8 + k9ed · rg. s48d

Note that the combination of the wave vectors in the expo-
nent is equal toGsk8+k9d, which is again one of the vectors of

the reciprocal lattice. The quantitiesG
nn8n9
s2d sk8 ,k9d inherit

symmetry properties from those of thednksrd, which follow
from the symmetry properties(28) and (33) of the Dnksrd.
We find

fGnn8n9
s2d sk8,k9dg* = Gnn8n9

s2d s− k8,− k9d, s49d

Gnn8n9
s2d sk8,k9d = Gs−ndn8n9

s2d sk8,k9d = Gns−n8dn9
s2d sk8,k9d

= Gnn8s−n9d
s2d sk8,k9d = ¯ . s50d

Here and below we use the shorthand “=¯” to indicate all
other similar transformations of indices. As well, there is a
band-index permutation symmetry ofG

nn8n9
s2d sk8 ,k9d that fol-

lows from the Cartesian-index permutation symmetry of
G2

i jl srd,

Gnn8n9
s2d sk8,k9d = Gnn9n8

s2d sk9,k8d = Gn8nn9
s2d s− dk8 + k9e,k9d = ¯ .

s51d

The expressions given here can be easily generalized to in-
clude higher order nonlinearities.

Hamilton’s equations for thecnkstd,
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d

dt
cnkstd =

1

i"
fcnkstd,Hg, s52d

lead to coupled equations for thecnkstd; keeping terms up to
those quadratic incnkstd, we find

d

dt
cnkstd = − ivnkcnkstd + i

sgnsnd
Î8p3 o

n8n9
E

VB

dk8Gs−ndn9n8
s2d sdk

− k8e,k8dcn9dk−k8estdcn8k8std. s53d

Recall thatdke is a zone-wrapped wave vectork (46). Higher-
order nonlinearities can be included in the dynamical equa-
tion by a straightforward extension.

III. WAVE PACKETS AND EFFECTIVE FIELDS

A. Wave packets in reciprocal space

We now write our electromagnetic field as a superposition
of wave packets numbered with indexa. Each wave packet
involves Bloch modes from a single bandna, and all wave
vectors associated with the wave packet are close to some
central valueka. We refer to these as “formal” wave packets;
a typical such wave packet labeled bya only contains spatial
eigenmodesDnaksrd with kPVa, whereVa is the volume in
the reciprocal space(“k space”) that is centered aroundka
and that represents thek-space “footprint” of the wave
packet. That is, the support of each of these formal wave
packets is compact ink space. In Fig. 2 we shown 6 wave
packets in 4 different photonic bands of a 1D photonic crys-
tal by shaded ovals overlaying the parts of the bands that
correspond to the modesDnaksrd comprising those wave
packets.

Eachk-space volumeVa may wrap at the boundary of the
first Brillouin zoneVB if ka is sufficiently close to its bound-

ary. This is illustrated byV2 in the left plane of Fig. 3, that
shows the first Brillouin zone of a 2D hexagonal lattice. The
distance betweenk andka should be judged allowing for the
wave vector wrapping at the zone boundary. We later exploit
the small size ofVa relative to VB by performing Taylor
series expansions of fields atka and only retaining the most
significant terms of the expansions, based on the multiple-
scales analysis. To facilitate this approximate treatment, we
introduce “local” wave vectorsk= dk−kae, which are small
compared to the maximum width ofVB. Each wave packeta
associates a differentk vector for a givenk, since the central
wave vectorka enters into the definition ofk. For kPVa the

corresponding local wave vectorskPV̄a, whereV̄a is the
wave-packet footprint volume in thek space, centered

aroundk=0. We assume thatV̄a do not reach the boundaries

the first Brillouin zone, since the diameters ofV̄a are small.
We choose thek-space volumesVa in such a way that

different Va and Va8 do not overlap if the wave packets
belong to the same photonic bandna=na8. This condition can
be formally expressed as

dnana8
Pasdk − kaedPa8sdk − ka8ed = daa8Pasdk − kaed, s54d

wherePaskd is a “filter” function, defined as

Paskd =H1, for k P V̄a,

0, for k ¹ V̄a,
J s55d

and the conditionkPV̄a is equivalent tokPVa.
In principle one could organize an arbitrary initial state of

the electromagnetic field with the aid of these formal wave
packets, by first completely covering the Brillouin zone with
a set of nonoverlapping volumesVa for each band, identify-
ing a formal wave packet centered at eachka, and then sort-
ing the different Bloch components of the electromagnetic
field into these wave packets. In practice, of course, one is
often interested in a one or a fewphysical wave packets,
often taken to be Gaussian in form for simplicity, that are
centered at different wave vectors. Strictly speaking, a
Gaussian wave packet will extend to wave vectors outside
any finite volume in reciprocal space, such as the volumes
Va. Nonetheless, in many cases of interest it is possible to
defineVa large enough so that, while still a small fraction of

FIG. 2. Reciprocal-space envelope functionsfk
a, where k=fk

−kag, include the parts of the photonic bands marked by the shaded
ovals. They represent the wave packets witha=1, 2, and 3 and their
concomitant counterparts within the bands with negativena.

FIG. 3. Left: two wave-packet footprintsVa in the first Brillouin

zone(k space); right: the wave-packet footprintsV̄a in the space of
local wave vectorsk= dk−kae.
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the volume of the Brillouin zone, essentially the full Gauss-
ian wave packet is contained within in. But if this is not the
case, the electromagnetic field in a single physical wave
packet can be divided into as many formal wave packets as
necessary to achieve a good approximation. The theory we
develop below allows for the interaction of these formal
wave packets. Propagation of a single physical wave packet
can, if necessary, be treated as the propagation and interac-
tion of a set of formal wave packets. Even if this is not
thought necessary, and it is supposed that a given physical
wave packet can be well-approximated by a single formal
wave packet, such a more general treatment could be imple-
mented to check the quality of the approximation.

We number the wave packets so that

sgnsad = sgnsnad, s56d

and we include the wave packets−ad, whose constituent
modes are complex conjugates of the modes forming the
wave packeta, to guarantee that the electric field is real.
These concomitant wave packets, one ats−ad for each wave
packet ata, are described by the parameters

ns−ad = − na, s57d

ks−ad = − ka, s58d

Ps−ads− kd = Paskd. s59d

We now introduce positive-index reciprocal-space enve-
lope functionsgk

astd that represent the contribution of the
wave packeta.0 to the field expansion coefficientanakstd,

gk
astd = Paskdanadka+kestd. s60d

Using this definition, we can write theankstd as

ankstd = o
a

dnna
gdk−kae

a std. s61d

The zone-wrapped wave vectordk−kae in (61) reflects the
fact that, forka close to the boundary of the first Brillouin
zone, some wave vectorsk of the wave packet can be located
on the opposite side of the Brillouin zone.

The Poisson bracket forgk
astd,

fgk
astd,„gk8

a8std…†g = daa8Paskddsk − k8d, s62d

follows from Eq. (38), taking into account the definition of
gk

astd (60) and the nonoverlapping of the same-band wave
packets[see Eq.(54)]. This is similar to what has been done
earlier[6], but there only one wave packet per photonic band
was considered, and thus the introduction of the filter func-
tion (55) was not necessary. As a result, there was no filter
functionPaskd appearing in the commutation relation corre-
sponding to Eq.(62). Our Eq.(62) is a generalization of that
work [6] necessary to treat a number of wave packets in the
same band.

As with the field expansion coefficients, it is convenient
to introduce reciprocal-space envelope functionsfk

astd that
can accept both positive and negative wave-packet indicesa,

fk
astd ; H gk

astd, for a . 0,

„gs−kd
s−ad std…†, for a , 0,

J s63d

and using Eq.(39) we see that

fk
astd = Paskdcnadka+kestd s64d

for both positive and negativea; this is illustrated in Fig. 2.
The Poisson bracket forfk

astd immediately follows:

ffk
astd,fs−k8d

s−a8d stdg = sgnsaddaa8Paskddsk − k8d. s65d

The introduction of the reciprocal-space envelope func-
tions allows us to separate the field itself into distinct wave-
packet contributions. Using Eq.(40) and the definition of
fk
astd, the fieldDsr ,td can now be written as a superposition

of the field wave packetsDasr ,td,

Dsr,td = o
a

Dasr,td, s66d

where

Dasr,td =E
VB

dkfdk−kae
a stdDnaksrd. s67d

The field wave packetsDasr ,td have the obvious symmetry,

Ds−adsr,td = fDasr,tdg†, s68d

which ensures the reality of the electric field.

B. Formal wave packet dynamics

We can now turn to the dynamical evolution of these
wave packets. The part of the Hamiltonian describing linear
dynamics[Eq. (44)] is expressed in terms of the reciprocal-
space envelope functionsfk

astd using Eq.(64),

H0 = o
a
E

VB

dk
"uv̄k

au
2

fs−kd
s−ad stdfk

astd, s69d

where the summation extends to both positive and negative
a, and we have defined

v̄k
a ; vnadka+ke. s70d

Writing the part of the Hamiltonian describing the quadratic
optical response[Eq. (45)] also in terms of the reciprocal-
space envelope functionsfk

astd, we find

Hs2d = −
"

3Î8p3 o
aa8a9

E
VB

dk8E
VB

dk9gaa8a9
s2d sk8,k9d

3fs−dk8+k9+D
aa8a9
s2d ed

a stdfk8
a8stdfk9

a9std, s71d

where the mismatch of the central wave vectors of the wave
packetsa, a8, anda9 is denoted as

Daa8a9
s2d ; ka + ka8 + ka9, s72d

and
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gaa8a9
s2d sk8,k9d ; Gnana8na9

s2d sdka8 + k8e,dka9 + k9ed. s73d

The g
aa8a9
s2d sk8 ,k9d inherit a set of symmetry properties

from theG
nn8n9
s2d sk8 ,k9d; from Eqs.(49) and (50) we find

fgaa8a9
s2d sk8,k9dg* = gs−ads−a8ds−a9d

s2d s− k8,− k9d, s74d

gaa8a9
s2d sk8,k9d = gs−ada8a9

s2d sk8,k9d = gas−a8da9
s2d sdk8 + 2ka8e,k9d

= gaa8s−a9d
s2d sk8,dk9 + 2ka9ed = ¯ , s75d

while the permutation symmetry ofg
aa8a9
s2d sk8 ,k9d follows di-

rectly from Eq.(51),

gaa8a9
s2d sk8,k9d = gaa9a8

s2d sk9,k8d = ga8aa9
s2d s− dk8 + k9

+ Daa8a9
s2d e,k9d = ¯ . s76d

In treating this second-order interaction, we assume that
to good approximation the material polarization created by a
pair of wave packetsa8 and a9 will only affect a limited
number of wave packetsa, the set of which we denote as
As2dsa8 ,a9d. Consequently, the wave packetsa8 and a9
should appear in some terms in the nonlinear Hamiltonian
together with the wave packets−ad. In most cases, every set
As2dsa8 ,a9d contains two wave packetsa that belong to two
photonic bands differing by the polarization of their modes.
Obviously, the setAs2dsa8 ,a9d is not empty if the second-
order nonlinear interaction between the wave packetsa8 and
a9 actually occurs.

From a formal point of view, it would be hard to achieve
the self-consistency of our set of interacting wave packets
without extending them to allk-vectors in all photonic
bands. Even with the assumption that each actual wave
packet in the photonic crystal is well described by thek
vectors within a given formal wave packet, we would have to
take into account the effects of the nonlinear interaction
where the wave packetsa, a8, and a9 are combined in all
different ways. That is, not onlydk8+k9e should be in some
Va, aPAs2dsa8 ,a9d for every pair of Bloch modes withk8
PVa8 andk9PVa9 that participate in the second-order inter-
action, but our set of wave packets should also contain all the
Bloch modes that may appear in the interaction of any wave
packet containing Bloch modes with wave vectorsdk8+k9e
PVa, and so on. In practice, of course, the wave packets that
become important are restricted by phase-matching consid-
erations. In this respect the interaction of wave packets in
photonic crystals resembles that of wave packets in uniform
media, except of course that in photonic crystals those phase-
matching conditions can have much richer consequences. We
will see below how phase-matching limits the number of
wave packets we need consider; for the moment we assume
that those considerations restrict us in practice to a finite set.
Note that since concomitant wave packetsa and s−ad are
always present in pairs, and because of the symmetries dis-
cussed above, from aPAs2dsa8 ,a9d follows s−ad

PAs2ds−a8 ,−a9d. With our choice of wave packets, the sum
over all a in Eq. (71) can be replaced with a sum overa
PAs2ds−a8 ,−a9d.

The equation of motion forfk
astd, written here up to the

terms quadratic infk
astd, follows directly from Eq.(53) and

the definition offk
astd (64):

d

dt
fk
astd = − iv̄k

afk
astd + i

sgnsad
Î8p3 o

a8a9:

aPAs2dsa8,a9d

E
VB

dk8gs−ada9a8
s2d sk

− k8 − Ds−ada9a8
s2d ,k8dfsk−k8−Ds−ada9a8

s2d d
a9 stdfk8

a8std. s77d

In this equation we have omitted the zone-wrapping notation
d…e, assuming that the wave packets(and hencek’s) are
reasonably small in thek-space and that the wave-vector
mismatchDs−ada9a8

s2d is also small.

C. Effective fields and their properties

We now move from reciprocal space to real space and
introduce effective fields associated with the formal wave
packets introduced in Sec. III A. We define the effective field
of a wave packeta as a Fourier transform of its reciprocal-
space envelope functiongk

astd or fk
astd. To do this we can

restrict ourselves to positivea and an analysis based on
gk

astd, using complex or Hermitian conjugates for negative-
index wave packets. Fora.0, then, we introduce positive-
index effective fields,

gasr,td =E
VB

dk

Î8p3
gk

astdexpsik · rd. s78d

The Poisson brackets involving thegasr ,td are obtained from
the Poisson brackets involving thegk

astd (62),

fgasr,td,ga8
† sr8,tdg = daa8P̃asr − r8d, s79d

where

P̃asrd ;
1

8p3E
VB

dkPaskdexpsik · rd s80d

is a “space filter function” that filters a given wave packet
out of all same-band wave packets. The appearance of a filter

function P̃asr −r8d rather than a Dirac delta function in Eq.
(79) is a consequence of our division of reciprocal space into
a set of wave packet regions.

We also introduce the effective fieldsfasr ,td that can ac-
cept both positive and negative wave-packet indicesa,

fasr,td ; H gasr,td, for a . 0,

gs−ad
† sr,td, for a , 0,J s81d

from which it follows that

fasr,td =E
VB

dk

Î8p3
fk
astdexpsik · rd s82d

for both positive and negativea. The Poisson bracket for
fasr ,td follows from Eq.(79),
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ffasr,td, f s−a8dsr8,tdg = sgnsaddaa8P̃asr − r8d. s83d

Using the inverse Fourier transform offasr ,td, we express
the field wave packet(67) in terms of the effective field:

Dasr,td =E dr8
Î8p3

fasr8,tdE
VB

dkDnadka+kesrdexps− ik · r8d.

s84d

Note that instead ofVB we could use any volume in the

k-space that containsV̄a, so there remains some freedom in
specifying the “kernel” of the transformation from the effec-
tive field to the actual electric field.

One of the reasons for introducing the effective fields
fasr ,td is to benefit from series expansions atk=0 that we
will now undertake. The idea is that a well-localizedDasr ,td
consisting of contributions from a narrow range ofk (67)
can be described by a smoothly varyingfasr ,td. This only
follows, of course, if the Bloch functionsDnaksrd are slowly
varying overVa; if Va is split at the boundary of the first
Brillouin zone, this is understood as theDnadka+kesrd being

slowly varying in theV̄a. If Va is small and there are no
points, lines, or surfaces of degeneracy that involve the band
na in Va, this can be achieved by suitably choosing the phase
of Dnaksrd at everyk through, for example, ak·p type of
expansion aboutka [14,15]. With degeneracies inVa that
involve the bandna the problem is more complicated; we
will not address it here, but plan to turn to it in a future
communication.

To see how such a series expansion can be introduced into
a description of the dynamics, we begin with the part of the
Hamiltonian describing the linear response. We use the ex-
pansion

v̄k
a = va + va

sidki +
1

2
va

si j dkik j + ¯ , s85d

where

va ; vnaka
= − vs−ad, s86d

va
sid ; b]vnak

]ki c
k=ka

= vs−ad
sid , s87d

va
si j d ; b]2vnak

]ki]kj c
k=ka

= − vs−ad
si j d , etc. s88d

The second series coefficient is the group-velocity vector of
the wave packeta: va

i ;va
sid. The third coefficientva

si j d is
obviously symmetric with respect to the permutation of its
indices i and j . Then we can writeH0 in the form of a

volume integral of the sum of the contributionsh̃0asr ,td from
separate wave packetsa,

H0 = o
a
E drh̃0asr,td, s89d

where in the expression forh̃0asr ,td we rely on the series
expansion ofv̄k

a up to the second order ink,

h̃0asr,td =
"uvau

2
F f s−adsr,tdfasr,td + i

va
sid

2va
S ]f s−adsr,td

]r i fasr,td

− f s−adsr,td
]fasr,td

]r i D +
va

si j d

2va

]f s−adsr,td

]r i

]fasr,td
]r j

+ ¯ G . s90d

As we will show later, thish̃0asr ,td can be considered a lin-
ear part of the averaged energy density of the electromag-
netic field, attributed to the wave packeta. We define it here
to be Hermitian,

fh̃0asr,tdg† = h̃0asr,td, s91d

although it is not necessary, sinceh̃0asr ,td and h̃0s−adsr ,td
=fh̃0asr ,tdg† always appear together in Eq.(89). The approxi-
mation involved in truncating Eq.(85) when deriving Eq.
(90) can be characterized formally, in the multiple-scales
sense, by introducing small parameters that identify the ratio
of va

sid /2va to the distance over which the functionsfasr ,td
vary, and of the ratio ofva

si j d /2va to the square of that dis-
tance,etc. We will not perform that formal multiple-scales
analysis here.

An approximate expression forHs2d, following from Eq.
(71), can also be written as a volume integral,

Hs2d =E drh̃s2dsr,td, s92d

where

h̃s2dsr,td = −
"

3 o
aa8a9:

s−adPAs2dsa8,a9d

ḡaa8a9
s2d fasr,tdfa8sr,tdfa9sr,td

3expsiDaa8a9
s2d · rd, s93d

and forg
aa8a9
s2d sk8 ,k9d we have adopted the approximation

gaa8a9
s2d sk8,k9d < gaa8a9

s2d S−
1

3
Daa8a9

s2d ,−
1

3
Daa8a9

s2d D ; ḡaa8a9
s2d .

s94d

The reason for using −13D
aa8a9
s2d in this definition is to make

ḡ
aa8a9
s2d more symmetric, so that

fḡaa8a9
s2d g * = ḡs−ads−a8ds−a9d

s2d , s95d
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ḡaa8a9
s2d = ḡaa9a8

s2d = ḡa8aa9
s2d = ¯ , s96d

thus simplifying our subsequent formulas. Corrections over
Eq. (94) to g

aa8a9
s2d sk8 ,k9d can be introduced, again in a

multiple-scales analysis, but we will here keep only the low-
est order contributionḡ

aa8a9
s2d to g

aa8a9
s2d sk8 ,k9d, under the as-

sumption that the nonlinearity is weak and its effect is at
most of the order of the group-velocity-dispersion term in

Eq. (90). The termh̃s2dsr ,td is Hermitian because of the sym-

metry properties ofḡ
aa8a9
s2d (95) and (96). Note thath̃s2dsr ,td

cannot be separated into contributions from different wave
packets, but rather represents the contribution of the wave-
packet interaction to the averaged energy density.

The equation of motion for thefasr ,td is now obtained
either by taking a Fourier transform of the equation of mo-
tion for fk

astd (77) or from the Hamilton equation,

]

]t
fasr,td =

1

i"
ffasr,td,Hg, s97d

and it is as follows:

]

]t
fasr,td = − ivafasr,td − va

sid]fasr,td
]r i +

i

2
va

si j d]
2fasr,td
]r i]r j + ¯

+ i sgnsad o
a8a9:

aPAs2dsa8,a9d

ḡs−ada8a9
s2d fa8sr,tdfa9sr,td

3expsiDs−ada8a9
s2d · rd. s98d

In deriving this equation of motion, we have used the expres-
sion (83) for the Poisson bracket forfasr ,td, which does not
include a Diracd-function. From the Poisson bracket the
Fourier transform of the nonlinear part of the equation ac-
quires a factor ofPaskd; this is equivalent to the condition
aPAs2dsa8 ,a9d we impose on the summation over the wave
packets. This condition naturally “directs” the nonlinearly
generated field to appropriate wave packets; if we would
have a Diracd-function Poisson bracket, we would have to
assign the nonlinear contributions to different wave packets
“by hand,” from physical and convenience considerations.

In many cases it is convenient to introduce a slowly-

varying effective fieldf̄ asr ,td,

fasr,td = f̄ asr,tdexps− iv̄atd, s99d

wherev̄a is a “carrier frequency” that can be chosen later for

convenience. The equation of motion forf̄ asr ,td then takes
the form

S ]

]t
+ va

i ]

]r iD f̄ asr,td = − isva − v̄ad f̄ asr,td +
i

2
va

si j d]
2f̄ asr,td
]r i]r j

+ ¯ + i sgnsad o
a8a9:

aPAs2dsa8,a9d

ḡs−ada8a9
s2d

3 f̄ a8sr,td f̄ a9sr,tdexpfisv̄a − v̄a8 − v̄a9dt

+ iDs−ada8a9
s2d · rg. s100d

By suitably choosingv̄a and ka, we can eliminate some of
the termssva−v̄ad, sv̄a−v̄a8−v̄a9d, andDs−ada8a9

s2d , but cannot

generally eliminate all of them.

D. Continuity equation

To approximately describe the energy distribution of the
electromagnetic field, we introduce the effective energy den-
sity consisting of the linear and nonlinear contributions de-
fined in Eqs.(90) and (93),

h̃sr,td = o
a

h̃0asr,td + h̃s2dsr,td, s101d

where the nonlinearity here is only accounted for up to the

second order. The effective energy densityh̃sr ,td satisfies the
continuity equation,

]h̃sr,td
]t

= − = · s̃sr,td, s102d

exactly, where the effective Poynting vectors̃sr ,td, like

h̃sr ,td, is a sum of linear contributions from separate wave
packets and nonlinear “interaction” terms,

s̃sr,td = o
a

s̃0asr,td + s̃s2dsr,td. s103d

Here the linear effective Poynting vector of the wave packet
a is

s̃0a
i sr,td =

"uvau
2

Fva
sidf s−adsr,tdfasr,td + i

va
sidva

s jd + vava
si j d

2va
S ]f s−adsr,td

]r j fasr,td − f s−adsr,td
]fasr,td

]r j D
+

va
sidva

s jkd

va
S ]f s−adsr,td

]r j

]fasr,td
]rk D +

va
sidva

s jkd − 2va
si j dva

skd

4va
S ]2f s−adsr,td

]r j]rk fasr,td + f s−adsr,td
]2fasr,td
]r j]rk D

+ i
va

si j dva
skld

4va
S ]2f s−adsr,td

]r j]rk

]fasr,td
]r l −

]f s−adsr,td

]rk

]2fasr,td
]r j]r l D + ¯ G , s104d

and the part ofs̃sr ,td arising from the quadratic interaction of the wave packets is
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s̃s2disr,td = −
"

6 o
aa8a9:

s−adPAs2dsa8,a9d

ḡaa8a9
s2d Hva

sidffasr,tdfa8sr,tdfa9sr,td + fa8sr,tdfasr,tdfa9sr,td + fa8sr,tdfa9sr,tdfasr,tdg − iva
si j d

3F ]fasr,td
]r j fa8sr,tdfa9sr,td + fa8sr,td

]fasr,td
]r j fa9sr,td + fa8sr,tdfa9sr,td

]fasr,td
]r j GJexpsiDaa8a9

s2d · rd. s105d

Both s̃0asr ,td and s̃s2dsr ,td thus defined are Hermitian. We

emphasize that withh̃sr ,td and s̃sr ,td defined by Eqs.(101)
and (103), the continuity equation(102) holds exactly. The

same is true for the linear quantitiesh̃0asr ,td and s̃0asr ,td for
each wave packet. This means that the effective Poynting
vector constituents(104) and (105) exactly match our trun-
cated definition of the effective energy density constituents
(90) and(93), although Eq.(103) is not simply an expansion

of s̃sr ,td to the same level thath̃sr ,td is expanded in Eq.
(101). The effective Poynting vectors̃sr ,td can be interpreted

as a flux of the effective energy densityh̃sr ,td.
In many cases, especially for an(approximate) interpreta-

tion of results obtained and expressed in terms of the effec-

tive fields, rough approximations forh̃sr ,td and s̃sr ,td suf-
fice,

h̃sr,td < o
a

"uvau
2

f s−adsr,tdfasr,td = o
a.0

"vaugasr,tdu2,

s106d

s̃sr,td < o
a

va
"va

2
f s−adsr,tdfasr,td = o

a.0
va"vaugasr,tdu2,

s107d

where the expressions withgasr ,td are given for the classical
case. These two formulas provide us with clear additive ex-
pressions allowing us to separate contributions from different
wave packets. Recall thatva

i ;va
sid here is the group-velocity

vector of the wave packeta.

IV. EXAMPLES

In this section we discuss two simple examples of optical
interactions governed by the quadratic susceptibility.

A. Parametric amplification

We first consider the degenerate parametric amplification
of a “weak” waveD1sr ,td in a photonic crystal in the pres-
ence of a “strong” waveD2sr ,td. The solution is well known
[2], but the example serves to compare our work with earlier
studies. We write

Dsr,td = D1sr,td + D2sr,td + fD1sr,tdg† + fD2sr,tdg†,

s108d

and only consider the cw regime in the undepleted pump
approximation, takingD2sr ,td to be a single mode with fixed
amplitudeA2,

D2sr,td = A2Dn2k2
srdexps− 2ivtd. s109d

Here we denote the strong-wave frequency as 2v;v2
;vn2k2

and assume that its wave vectork2i ẑ. The corre-
sponding effective field,

g2sr,td =
A2

Î8p3
exps− 2ivtd, s110d

does not have any spatial dependence. For the degenerate
parametric amplification in cw regime, the time dependence
of the weak wave is as follows:

g1sr ,td = ḡ1srdexps− ivtd. s111d

A comparison of this definition with Eq.(99) shows that we
have made the amplitude time-independent by choosing the
carrier frequencyv̄1=v. For simplicity, we have assumed
that the weak wave is confined to exactly one photonic band
n1. The central wave vectork1 of the weak-wave envelope
function is defined below.

The propagation equation for the weak-wave envelope
function ḡ1srd is obtained from Eq.(100),

v1 ·
]ḡ1srd

]r
= − isv1 − vdḡ1srd +

2iḡs2d

Î8p3
A2fḡ1srdg†expfisk2

− 2k1d · rg, s112d

where v1;vn1k1
and ḡs2d; ḡs−1d2s−1d

s2d ;Gn1n2n1

s2d sd2k̄e ,−k̄d,

wherek̄; 1
3 dk1+k2e. By choosingk1= 1

2k2= k̄, which gives us
a phase-matched set ofka, we eliminate the exponential
function in the last equation. We further restrict ourselves to
considering the case of exact frequency-matching, where
2v1=v2;2v. We also assume that the group velocity at the
point k1 of the photonic bandn1 is v1i ẑ, that could be
achieved by aligning one of the symmetry directions in the
photonic crystal alongẑ. All these assumptions simplify the
propagation equation forḡ1srd to

]

]z
ḡ1srd = ia0fḡ1srdg†, s113d

where
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a0 ; ua0ueif0 ;
2ḡs2dA2

v1
Î8p3

. s114d

If we set a boundary condition for the amplitude of the
weak wave atz=0,

ḡ1sz= 0d = ḡ1,0= const, s115d

we find thatḡ1srd will only depend onz, ḡ1srd= ḡ1szd, and the
solution of Eq.(113) will be as follows:

ḡ1szd = ḡ1,0 coshsua0uzd + ieif0sḡ1,0d†sinhsua0uzd. s116d

Our result agrees with the known solution[2] if we ne-
glect all the differences that are of higher-order than the re-
sults themselves. In[2] an ad hocperturbative method was
used for obtaining the coordinate dependence of the para-
metrically amplified signal. This method relies on plane
waves, that are functions of the three spatial coordinates, but
still uses the propagation length as an extra parameter. While
sufficient for illustrating the physical processes behind the
parametric amplification in photonic crystals in a plane-wave
approximation, the method of[2] is very inconvenient for
describing spatially-confined wave packets. On the other
hand, the effective-field formalism that we used here makes
the description of nonlinear wave-packet interactions in pho-
tonic crystals almost as simple as in homogeneous media.

B. Electro-optic effect

Another interesting example of the second-order nonlin-
ear interaction of wave packets is the electro-optic effect,
where one of the participating wave packets is in fact a con-
stant electric field—or an electric field oscillating with a very
low frequency compared to the optical frequencies—whose
amplitude is generally position-dependent. This kind of non-
linear optical interaction is always phase-matched, so the cal-
culations are simpler and employ fewer approximations than
in more general scenarios.

As a practical example, we consider a 2D GaAs photonic
crystal, where holes of radiusr0 are drilled in a triangular-
lattice pattern with the perioda0 (Fig. 4). The sample is of a
finite thicknessd0 in the direction of the holes axes, where
d0@a0 is large enough that we can still consider the sample
and its photonic bands in the approximation of an infinitely
thick 2D photonic crystal. In the simplest case that we de-
scribe below, the constant electric field applied to the sample
is directed along the hole axes, having a homogeneous field
strengthE0. A straightforward generalization of the problem

could describe the electric field oscillating with a low fre-
quency that is much smaller than the spectral width of the
optical field. A description of an inhomogeneous external
electric field may require including longitudinally polarized
as well as transverse solutions of the wave equation; this can
easily be done in a way similar to the introduction of the
transverse modes in this paper. In most practical cases, the
inhomogeneous electric field will be a slowly varying func-
tion of the spatial coordinates on the scale of the photonic-
crystal perioda0.

As in our last example, the total electric field in the
electro-optic problem consists of two wave packets and their
respective conjugates. One wave packet is an optical field
described by the effective fieldg1sr ,td; it has the central
wave-vectork1 and the central frequencyv1;vn1k1

. The
other wave packet is the zero-frequency electric field with a
homogeneous field strength, that is,

D2sr,td = fD2sr,tdg * = ẑ«0n
2srd

E0

2
, s117d

whereẑ is the unit vector directed along the hole axes, and
E0 is assumed to be real. The fieldD2sr ,td is proportional to
the z-polarized zero-frequency eigenmode,

dn20srd = ẑN2
−1«0n

2srd, s118d

wheren2 labels the lowest band. With the normalization that
we imposed in Eq.(30), the modeDn20srd [as well asdn20srd]
would strictly vanish at zero frequency; a different normal-
ization factorN2 is warranted for this special case. We need
not to identify this factor here, since it cancels in the final
result. The effective field for the second wave packet is pro-
portional toE0,

g2sr,td = N2
E0

2
, s119d

so that, in our particular case,

D2sr,td = g2sr,tddn20srd. s120d

SinceE0 is the fixed external driving field, we only have
one equation of motion, that follows from Eq.(98):

]

]t
g1sr,td = − iv1g1sr,td − v1

sid]g1sr,td
]r i +

i

2
v1

si j d]
2g1sr,td
]r i]r j + ¯

+ 2isN2ḡs−1d12
s2d dg1sr,tdE0. s121d

From this equation, we conclude that the introduction of the
homogeneous electric fieldE0 effectively amounts to a cor-
rection

Dveo= − 2sN2ḡs−1d12
s2d dE0 s122d

to the photonic-band frequencyv1. Figure 5 illustrates the
electro-optic frequency shiftDveo for the 1st and 4th TE-
polarized modes[that is, the modes withdn1k1

srd' ẑ; bands
are numbered in order of frequencies] in the 2D sample with
a triangular lattice of holes; for these bands no degeneracy
concerns arise away from theG point. In areas of the first
Brillouin zone with positive values ofDveo we use solid

FIG. 4. 2D photonic crystal slab, with holes drilled in a
triangular-lattice pattern.
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contour lines, while for negativeDveo we use dotted contour
lines. The refractive index of GaAs was taken to be 11.4,
which approximately corresponds to the vacuum wavelength
l=1.5 mm, and the relative hole radiusr0/a0=0.332 that
corresponds to the “air-fill factor” of 40%. We takenxxyz

s2dE0
=0.01 and used the relation(7) to expressG2

i jl in terms of
xi jl

s2d. In GaAs, which has thezincblendelattice structure and

4̄3m point symmetry group, both tensors have 6 equal non-
zero Cartesian components that are obtained fromxxyz

s2d and
G2

xyz using all permutations of the tensor indices. One of the
crystallographic axes of GaAs is directed alongẑ, two others
are aligned with theGK and GM directions of the photonic
crystal lattice. The effective quadratic susceptibilityḡs−1d12

s2d ,

which is responsible for the electro-optic interaction, is ex-
pressed in a straightforward manner in terms of the photonic
modes and the quadratic susceptibilityG

nn8n9
s2d srd using Eqs.

(94), (73), (48), and(118):

N2ḡs−1d12
s2d =

1

"«0
E

Vcell

dr

Vcell
G2

izjsrdfdn1k1

i srdg*«0n
2srddn1k1

j srd.

s123d

We computed this integral numerically, with the photonic
modes obtained using the MIT Photonic-Bands package[11].
Note that Eq.(121) and (123) can be easily generalized to
include the dispersion(k-dependence) of gs−1d12

s2d . The result-

ing formulas are much simpler if written in the reciprocal
space.

The symmetry of the photonic modes in the first Brillouin
zone is determined by the symmetry group of the photonic-
crystal lattice, since the dielectric tensor of GaAs is isotropic.
Applying the electric field lowers the symmetry of GaAs,

inducing optical birefringence, so the plots ofDveo in Fig. 5
exhibit lower symmetry than the symmetry of the modes.

The approach to calculatingDveo according to Eqs.(122)
and(123) may be described as a perturbative method, where
we find the frequency change using a fixed basis set of pho-
tonic modes, andxizj

s2dE0 is the small parameter. Indeed, if we
take a small variation of Eq.(35) that arises from changing
«i j =n2di j by 2xizj

s2dE0, then use Eqs.(22) and(23), and finally
integrate byk8 over the first Brillouin zone and sum overn8,
we will get an expression forDveo, equivalent to Eqs.(122)
and (123). As it is common in the perturbation theory, the
variation in the modes(Dnksrd ,Bnksrd) does not affectvnk in
the first approximation, that is, we will have the sameDveo,
whether we fix the modes, when varying«i j , or not. Techni-
cally, this results because the change invnk arising from the
variation inDnksrd in Eq. (35) is equal in the absolute value
but opposite in direction to the change arising from the varia-
tion in Bnksrd.

We can also findDveo by calculating the shift of the pho-
tonic band frequencies, arising when we change the dielec-
tric tensor of GaAs«i j =n2di j by an electric-filed induced
tensor 2xizj

s2dE0 [cf. Eq. (6)]. The change in the dielectric ten-
sor leads to a change in the photonic band structure, and we
compute the difference between the mode frequencies of the
modified and original band structures. We have shown by
numerical calculations that for small electric fieldssxizj

s2dE0

!1d the frequency shift is very close to the shift computed
according to Eqs.(122) and (123); the difference only be-
comes significant atxizj

s2dE0*0.1.
We note, however, that the method of computingDveo by

treating the electro-optic effect as a quadratic nonlinear in-
teraction, as outlined in Eqs.(122) and (123), is much more
powerful, since it can be easily generalized to an inhomoge-
neous distribution of the external electric field. This is im-
portant to properly describe controlling of light in photonic
crystals with a localized electric field, which has possible
applications in building photonic devices. We defer investi-
gation of such more complex examples to a later publication.

Finally, we give some estimates of the electro-optic fre-
quency shift in GaAs. The electro-optic coefficient of GaAs,
r <1.5310−12 m/V [17], is connected with the quadratic
susceptibility tensor used in this paper as 2xxyz

s2d =«2r; the
electric field applied to the sample cannot exceed the
electric-breakdown threshold of the air,Emax

air <33106 V/m,
which is more than an order of magnitude less than the
electric-breakdown threshold of GaAs. This means that the
highest achievable value ofxizj

s2dE0 is of the order of 3
310−4, which is in the range where our first-order perturba-
tion approach forDveo works well. SinceDveo scales lin-
early withE0, we can estimate from Fig. 5 that the maximum
relative change in the photonic band frequenciesDveo/vnk
that corresponds to the highest achievable electric field is of
the order of 3310−5. Such small changes in the photonic
band frequencies can only be realistically detected at the
band edge, as was done recently in a four-wave mixing pro-
cess[16]. Even in that case and with the constant electric
field close toEmax

air , such measurements would be at the limit
of experimental techniques. To enhance the effect, one could
use a material with larger electro-optic coefficient. Another

FIG. 5. Normalized frequenciesv1a0/c [(a), (b)] and the respec-
tive electro-optic band-frequency shiftsDveo [(c), (d)] of the 1st
[(a), (c)] and 4th[(b), (d)] TE photonic bands plotted vsk1 in the
first Brillouin zone of a 2D photonic crystal with a triangular lattice
of holes drilled in a GaAs sample.
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approach would be to fill the holes of the photonic crystal
with a low-index material with much higher electric-
breakdown threshold than that of the air, and apply a stronger
electric field.

V. CONCLUSION

Using an effective-fields approach introduced earlier for
single-wave-packet configuration[6], we have generalized
this useful and convenient formalism to describe nonlinear
interactions of multiple wave packets. This generalization is
not quite straightforward, and involves a modification to the
previously used definition of the wave packet itself[6] by
introducing the filter functionsPaskd, which allows for mul-
tiple wave packets within the same photonic band. While this
change in the definition of the effective fields leads to a more
complicated form of the Poisson bracket that is no longer
canonical, this turns out not to be a significant complication
for the derivation of the dynamical equations and their use.

In the course of our analysis we have introduced the ef-
fective energy density and the effective Poynting vector,

which constitute a natural way to describe the average en-
ergy distribution and flux of the electromagnetic field in this
formalism. The continuity equation that these new quantities
satisfy allows for a convenient way of checking the consis-
tency and precision of numerical computations based on the
dynamical equations for the effective fields.

In the formulas presented in this paper, we have only
retained terms involving the quadratic optical susceptibility.
Still, the extension of our theoretical approach to higher-
order susceptibilities is very straightforward. The examples
of nonlinear optical interactions of wave packets we pre-
sented here are deliberately chosen as simple as possible to
illustrate the way the formalism works and how it can be
used; more complex problems will become subjects of sepa-
rate papers.
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