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We develop an effective-field formalism that is suitable for describing nonlinear interactions of multiple
wave packets in photonic crystals of arbitrary dimensionality. The theory is valid for “high-contrast” variations
of the refractive index in the photonic crystal, provided dispersion and absorption effects can be neglected; it
is based on a Hamiltonian formulation of the underlying Maxwell equations. We show that the dynamical
equations for the effective fields are similar to those commonly used in nonlinear optics of homogeneous
media, but with coefficients determined from the photonic band structure. We can introduce an effective energy
density and an effective Poynting vector, expressed in terms of the effective fields, that satisfy a continuity
equation. We illustrate our approach with a solution of the problem of degenerate optical parametric amplifi-
cation in the undepleted pump approximation, and by considering the linear electro-optic effect as a quadratic
nonlinear optical process.
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[. INTRODUCTION similar to those commonly used in nonlinear optics of homo-
geneous media, but with coefficients determined from the
Photonic crystal§1,2] provide new opportunities for en- photonic band structure. In contrast, if one introduces wave
hancing and controlling nonlinear optical processes, such gsackets in photonic crystalda a slowly varying envelope
second-harmonic generation, optical parametric amplificafunction that multiplies a Bloch-function “carrier” wave, the
tion, and self- and cross-phase modulation. In the past feworresponding dynamical equatiof$] are much harder to
decades different theoretical approaches have been dev@btain[7].
oped for describing nonlinear processes in “low contrast” In Sec. Il we introduce the basic equations and the nota-
periodic materialg§3], where there is only a small variation tion that we will use further in the article. We assume that the
in the linear refractive index, usually with a focus on one-dielectric media comprising the photonic crystal are nondis-
dimensional periodic waveguide structures. These traditionddersive, nonmagnetic and without absorption. When writing
approaches are not appropriate for the kind of “high-down the dynamical equations, we use a Hamiltonian ap-
contrast” variations in the linear optical properties that areproach that not only simplifies our formulas, but allows us to
typical of two- and three-dimensional photonic crystals. Aquantize the problem easily, and to find conserved quantities
straightforward multiple-scales analysis based on slowlyand investigate their relation to symmetries. In the constitu-
varying amplitudes introduced for the different Bloch func- tive relations and dynamical equations for the electromag-
tions can be applied to such problems, but it is often cumnetic field we treat the electric displacement fiBi¢t,t) and
bersomg4]. Recently, an effective-fields formalism has beenthe magnetic fieldB(r,t) as our fundamental fields, since
proposed, based on a Hamiltonian formulation of the undertheir exact transversality can be automatically guaranteed.
lying dynamics of the electromagnetic fie]8,6]. This ap-  The strength of this choice of the fundamental fields was first
proach is applicable to high-contrast structures, and yet legminted out by Born and Infeldi8] and discussed in more
awkward than the earlier multiple-scales analyses. We dendetail in [9]; a helpful review of different approaches to ca-
onstrate that an extension of this effective-fields formalisrmonical quantization in light propagation problems can be
allows us to describe different wave mixing processes irfound in[10]. We introduce Bloch eigenmodes of the photo-
high-contrast photonic crystals in a convenient and intuitivenic crystal[1], and write down the dynamical equations for
way. the coefficients of the Bloch-mode expansion of the electric
In the effective-fields formalism, wave packets in a pho-field D(r,t). For simplicity, we limit ourselves to considering
tonic crystal are comprised of Bloch functions in the sameonly the quadratic optical nonlinearity, and we use negative
photonic band with close wave-vector indices; the contribuband indices to make our notation suitable for simultaneous
tions of the different Bloch functions to a wave packet aredescription of the field-expansion coefficients and their
described by a slowly varying function of the wave-vectorcomplex-(or Hermitianj conjugated counterparts.
index. The effective field is the Fourier transform of this  Section Ill, where we present a step-by-step introduction
wave-vector function, which is a slowly varying function of of the effective-fields formalism for multiple wave-packets
the spatial coordinates. The effective fields give an “averinteraction, contains the main result of our article. We start
aged” description for the electromagnetic field in a periodicwith defining wave packets for a convenient description of
medium; in terms of them expressions for the average energyonlinear wave-mixing processes and deriving the corre-
density and Poynting vector can be given. In this paper, waponding dynamical equations. We have to generalize the
show that the dynamical equations for the effective fields arelefinition of the wave packet used j6] to allow for mul-
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tiple wave packets in the same photonic band; it leads to a PiNL(r=t) :FE'(r)Dj(r,t)D'(r,t)
modified Poisson bracket that is no longer canonical, but still iim j | "
is almost as convenient to use. Then we introduce the effec- + ()DL HD (r,hD™(r, ) + - (5)

tive fields. and deriye Fhe dynamical equation for them. Weris tensor expression implies summation over the repeating
also obtain a continuity equation for the effective energycartesian indices, that we will generally denote as
density and the effective Poynting vector, which connects th(f,-,j J1,m, writing them as superscripts. The nonlinear
effective fields with wave-packet intensities. “D-susceptibilities” are symmetric with respect to the permu-
To demonstrate the approach in some detail, in Sec. IV Westion of any of their Cartesian indices. This “full permuta-
apply our formalism to solving two simple problems of non- tjon symmetry”[12,13 follows because of the non-resonant
linear optical interaction in a photonic crystal with a nonva- character of the nonlinear optical interaction.
nishing quadratic susceptibility. First, we consider degener- |; is customary to expresB(r,t) in terms ofE(r,t) rather

ate optical parametric amplification in the simplest case of,5n D(r,t) according to the following formula:
plane-wave geometry and undepleted pump approximation. . ' _ _

Not unexpectedly, the lowest order approximation of our P(r,t) = go{[N(r) - 1]E'(r,t)+Xi(j2,)(r)EJ(r,t)E'(r,t)
treatment agrees with the result of a maek hocperturba- 3 j | m

tion theory. Next, we show that the effective-fields formalism * Xijim (NE/(OE(r, DET(r, ) + -+ . (6)
is also applicable for describing the linear electro-optic ef—T
fect, that we treated as a second-order nonlinear process,. . G e (n) . -
with one of the interacting wave packets being the constal ftional” susceptibilitiesy ™(r) are obtained by substituting

electric field applied to the photonic crystal. The advantageC gesﬁi(;)erz?trs‘do(fec)ji;frgferstqsé\gvge)r:rg (i?tﬁg(:egalrgﬁarg(g rtehse-
of such a description over a simple modification of the re- P g exXp

fractive index according to the constant electric field and>on with those in Eq(6). This gives us the following rela-

subsequent finding of “shifted” Bloch functions is that we tions:

he relations between the susceptibiliﬂﬁ;{r) and the “tra-

can also describe the effect with the electric field being non- . Xi('2|)(r)
uniform (slowly varying in space(or time). We present our ()= 8—'%, (7
0

conclusions in Sec. V.

II. BASIC EQUATIONS

. 1 2
TN = 25— Xijim() = S =xXaOxem() |- ()

jim 2 ijq glm
A. Constitutive relations gon°(r) n=(r)

The constitutive relations in a nonmagnetic medium are

usually written as B. Hamiltonian formalism for the electromagnetic field

D(r,t) = goE(r,t) + P(r,1), @ A Hamiltonian that gives the dynamical equations for the
electromagnetic field is
B(r,t) = uoH(r,1), 2
(1,0 = uoH (1,0 v M=o ©

where the polarization of the mediuR{r,t) depends on the ) ) )
electric fieldE(r, 1), in general in a nonlocal way. Contrary to WhereH, describes the linear optical response,

this approach, we usB(r,t) andB(r,t), rather tharkE(r,t) D(r,t) - D(r,t) B(r,t) - B(r,t)
andH(r,t), as independent dynamical variab[&% Thus we Ho:fd — fd ’ —, (10
reverse the constitutive relations to expre$s,t) andP(r,t) 2eqn°(r) 2o
in terms ofD(r,t) andH(r,t) in terms ofB(r,t); the latter is, and 7, describes nonlinear effects,
of course, trivial. We further assume that the polarization
P(r,t) only depends locally orD(r,t), in both space and HNL:—ifdrl“g'(r)Di(r,t)Dj(r,t)D'(r,t)
time. This implies that we are far from any resonant frequen- 3eg
cies of the material, and that any absorption is negligible. 1
Further assuming that the linear optical response is isotropic, -— J drT™(r)Di(r,t)DI(r,t)D!(r,t)D™(r,t) + -+~ .
we can separatB(r,t) into linear and nonlinear parts as 4eg
n?(r)-1 (19
P(r.t) = nz—(r)D(r’t) + P (rb), () The Hamiltonian is equal to the total energy of the elec-

tromagnetic field.
S0 in the linear limit the commonly used relation between The fieldsD(r,t) and B(r,t) are transverse even in the
D(r,t) andE(r,t) becomes simply presence of nonlinear interactions, which allows us to leave
out all unphysical solutions by restricting our dynamical
D(r.t) = eo(NE(r.1), @) space to trpanysverse functions. ¥I’his ease ?n dealir?/g with the
wheren(r) is then identified as the refractive index, which transversality conditions oB(r,t) and B(r,t) is the reason
we take to be real. The nonlinear polarization is representetbr our somewhat unusual choice of them as our field vari-
as a power series iD(r,t): ables.
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When used with the Hamiltonia®), the Poisson brackets always real, and they contain these eigenmodes in complex-
for D(r,t) andB(r,t) that give the correct dynamical equa- conjugated pairs. For the moment we restrict ourselves to

tions are[8]

[Di(r,1),Di(r',t)]=0, (12)
[B'(r,t),B/(r',H)] =0, (13)
[D(r,1),Bi(r',t)] = —iﬁe”'%&(r -r'), (14)

where €l is the unit antisymmetric Levi-Civita tensor. Here

and below we use a notation for the Poisson bracket,

1
L] =l (15)

that emphasizes the similarity of the classical equations to

positive wy, and take the photonic band indexo run only
over positive integers; we will generalize this below.

According to Bloch’s theoremD,,(r) and B, (r) (often
referred to as Bloch functions or Bloch moglesin be writ-
ten as

Dlr) = s chy(nexplik 1), (22)
8
1 .
Bur) = —budrexpik 1), (23
V8

whered,,(r) andb,,(r) are periodic functions of,

Ank(r) = dni(r +R), (24)

their quantum counterparts. With the choice of Egs.

(12«14, the usual Hamilton’s equations,

d 1
ED(r’t) = E[D(F,t),H], (16)

Tyt
EB(r!t)_ Ih[B(rlt)!H]! (17)

lead to the dynamical equations fokr ,t) andB(r,t), which

Bri(r) = bn(r +R), (25)

with R an arbitrary lattice vector of the photonic crystal. The
factor of 1//87° is introduced for further convenience; it is
specific to the 3D case, and different factors would be more
useful in 1D and 2D problem&ee[6)); k is a wave-vector
index that varies continuously and is restricted to the first
Brillouin zone, which we denote aQg. Subsequently, all
k-dependent quantities are only defined foe Qg unless

are simply the two vector Maxwell equations in a dielectric Otherwise noted.

medium.

C. Bloch modes and their properties

In a photonic crystal all material properties are periodic

Finding the mode®,(r) and B,,(r) is straightforward
and easily done numerically using established algorithms;
programs implementing them are readily availgldlg. Note
that theD,,(r) modes are connected to the more commonly
usedE,(r) modes by a simple relation:

functions of r; for example, n(r)=n(r+R), TU (r)=T"(r
+R), etc., whereR is an arbitrary lattice vector of the pho-
tonic crystal. In the following, we consider 3D photonic All the Dy (r) and B (r) are naturally transverse, so they
crystals, but, unless otherwise noted, all formulas are quitéorm a convenient basis set for the transverse fi€élds;t)
general and applicable with minor obvious modifications toandB(r,t).

2D and 1D photonic crystals; the notational differences have The linearized dynamical field equatio$8) and (19)

£o?(1)Epk(r) = Dpy(r). (26)

been discussed earligs].
The linearized dynamical equations fofr,t) andB(r,t)

are obtained by neglecting the nonlinear polarization of the
medium Py (r,t) in the two Maxwell equations written in

terms ofD(r,t) andB(r,t):

D ==V X B, (19
ot Mo
=L b(r.H
atB(r’t)_ 8OV X ( 200 ) (19
Their stationary solutions take the form
D(r,t) = Dy (r)exp(— ioyt), (20
B(r,t) = Bk (r)exp— iogyt), (21)

wherewy, is the eigenfrequency corresponding to the pair of

possess important symmetries that follow from the time-
reversal symmetry of the Maxwell equations. In particular,

Wnp(-k) = Wnk, (27)

which implies that the first Brillouin zon&g has center-of-
inversion symmetry, whether the photonic crystal itself does
or does not have that symmetry. It also follows that we can
choose the eigensolutiof§] such that they satisfy

Dh-i(r) = Dy(r), (29

Br-io(r) = = Bp(r). (29

Corresponding symmetries apply th.(r) and by(r). Of
course, additional mode symmetries may arise due to rota-
tional and reflection symmetries of the photonic-crystal lat-
tice.

The magnitudes of the spatial field eigenmod&g(r)

spatial field eigenmode®,(r),B(r)). Physical fields are andB,(r) can be chosef6] so that
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J dr Dri(r) - Dyrier (1) _ ﬁﬁz)nk S dk=k'), (30 \-%= ;

’30”2(")
B (r) By (r) # n=2
fdr e e Mk sk—k'),  (3D)
Mo 2

where the integrations are performed over an infinite volume
and the factors appearing on the right-hand side are set for
convenience. We consider the left-hand sides of E88)
and(31) as the scalar products in the spaces of mdjgsr)
and B, (r), respectively. Thus these equations constitute the
orthonormality conditions for the modes. The orthogonality
of modes corresponding to different frequencigg follows
from the Hermiticity(with respect to the scalar products just
defined of the operators that act ob.(r) and By(r) in
wave equations that can be derived from Hd8) and(19)
for each of those fieldg6]. Thus it is only degenerate modes
that, by the choice of their form, must be explicitly orthogo-
nalized.

We now generalize this notation by introducing a band
index n that accepts both positive and negative integer val-
ues, so that

O(-nk = 7 Wn(-k)- (32 FIG. 1. Symmetries of the spatial field mod@(r),B (1)),
élustrated for a 1D photonic crystal, that originate from the time-
reversal symmetry of the Maxwell equations. The negative-index
photonic bandgdashed linesare mirror-symmetric to the positive-
D (1) = ;( k)(r) (33) index bandgsolid lineg with respect to thé axis.

The corresponding modes with negative index are define
according to

D. Field dynamics in terms of the mode-expansion coefficients

B k(1) = By, (34 _ e
We can expand(r,t) and B(r,t) in the positive-index

and it is easy to confirm that these negative-index solutionsgloch modesD,,(r) andB,,(r) [6] according to
when used in Eq920) and (21), also satisfy Eqs(18) and
(19). _ t "
These symmetries of the spatial field modes and the intro- D(r.p = go 0 dk[an(t)Dnk(r) + an (D (r)], (36)
duction of bands with negative indices are illustrated by Fig. B
1. The use of these negative-index solutions will consider-
ably simplify our notation below. Taking into account the B(r.t) = dk DB.(r) +al (B (r 37
symmetries expressed by Eq&8) and (29) and the defini- .y go 0g [20dDBd1) + an(DBr(1)]. (37
tions of the modes with negative band indi¢88) and(34), ) ) )
we conclude thatD_n(r) is the same aD(r), and where in a quanTtum problem th.e.m_ode-expansm_n coeffi-
Bn(r) is the same as By, (r), that is, only a half of all cientsa(t) anday,(t) are the annihilation and creation op-
D,(r) and a half of alB 4 (r) are independent. Still, the pairs €rators for photons in the bamdwith the wave vectok; in

. a classical problem they are appropriate combination of the
Of MOdes(D-ni(r), B-n(r) and(Dr(r), Bur)) are differ canonical coordinate and momentum associated with each

ﬁwode We adopt the quantum notation, in whigh(t) is the
Hermitian conjugate od,(1); in a classical problem we take
al (t) to meanay,(t).
Dr(r) - Dyt (1) Brye(r) - By (1) The Poisson bracket fa,(t) is obtained from the Pois-
f egn?(r) + P son brackets foD(r,t) andB(r,t) (12<14) using the com-
0 0 pleteness of the basis sets formed by the Bloch méxlgs)
= fi| | Sy Sk = K'), (35  andBy(r); we find

independent, and they satisfy the following generalized or-
thogonality relation,

in which n and n’ can accept both positive and negative U =558k - k'

values. This orthogonality relation for pai(®,,(r),B(r)) [Bnlt). By (1] = G otk = k) =8

can be obtained frortand is equivalent fothe two separate (see also[6]). This is the usual Poisson bracket for these
orthogonality relations foD(r) and B(r), restricted to variables in a classical problem, or the commutation relation
positive n only. for these operators in a quantum problem.
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It is convenient to introduce dynamical variableg(t) @ n(2)
that give us simpler mode expansion formulas for the fields. He == 3 T > dk'’ f dk"T e
We define thec,, () for both positive and negative band in- V87w Jag o

dicesn, X Crpmir k(D) Crrier () Crynen(t) (45)

(k/ , k”)

i), forn<o. (39 the wave vector in the first Brillouin zon@g that corre-

) { ay(), forn>0, where[k] denotes a “zone-wrapped” wave vectgrthat is,
Crk =
sponds to some arbitrary wave veckgr

Thus, only half of all thec,(t) are independent dynamical K=k - G,, such that

variables.
The mode expansion of the electromagnetic fields in
terms ofc,,(t) takes the compact form, k] € Qg, O Kk, (46)
with G, being one of the vectors of the reciprocal lattice,
D(r,)=2 |  dkep(t)Dpelr), (40)  includingO. In deriving Eq.(45), we have used the discrete-
n J0g Fourier-transform formula
S ex-in R =2 s+ ) (47)
BUh=2 |  dkcyl)By(r), (41) - TN e T
n J0Opg

here Vg is the volume of the unit cell of the photonic

where the summations are performed over both positive an\grystal the summations are performed over all lattice vectors

n_egative band indices. We ﬁn(.j such sim_ple_mode_ expan- pand all reciprocal vector§ of the photonic crystal, and we
sion formulas because the pairs of spatial field elgenmodEﬁave defined

(Dy(r), B (r)) form a complete basis set in our dynamical

space of all pairs of transverse fiel@3(r,t),B(r,t)), taken ,,(k’ k")
at a given timet. The field expansion coefficients,(t) can oo
be expressed in terms of the fields and Bloch modes, 1 dr . i i
= g V_rgl(r)dln[—k'—k”](r)d:"l'k’(r)d:"l"k”(r)
_ Daln)-D(1, | By -B(rY O Voen ZE1
Ck(t) = Hlaond d oo (1) i x exdi(k’ +Kk" =Tk’ +K"]) -r]. (48)

(42) Note that the combination of the wave vectors in the expo-
nent is equal td5 ., Which is again one of the vectors of

[cf. Eq. (35)]. Poisson brackets for the,(t) immediately the reciprocal lattice. The quantitieE(z) (k' k") inherit

. y nn/nll
follow from Eqgs.(39) and (38); we find symmetry properties from those of tlag(r), which follow

G, Cronyciery (0] = SIN) Sy K — K') (43) from the symmetry propertie®8) and (33) of the D(r).

We find
Poisson brackets involving,(t) and cT,k,(t) follow from [F (K KT =T@ (—Kk' -k (49)
this and from the fact thad:Tk(t) Clm-io(D) (39), but we (K e
will not need to refer to the!, (t) explicitly. (2) -
The part of the Hamiltonian describing linear dynamics ' (k' K" = | e (! :Fn( (K" K")
[Eq. (10)] has a simple harmonic form in terms of either the @ o
a(t) or thecy(t), =T e (KK )= (50)
; Here and below we use the shorthand-“=to indicate all
Ho=2 |  dkhiogal(Ham(®) other similar transformations of indices. As well, there is a
n>0-4g band-index permutation symmetry B>, (k’,k") that fol-
filon lows from the Cartesian-index permutation symmetry of
=2 dankC<—n>(—k>(t)an(t), 49 i g Y Y
n JQOg !

which follows from Eqs(40), (41), and(35). The nonlinear nn n”(k, k") ngn” (K" Kk') = Fn nn”( (K +KTK) =

part of the Hamiltoniar+y,, on the other hand, is much (51)
more conveniently expressed in terms of thgt). Thus we

will use thecy(t) as the dynamical variables in the formulas The expressions given here can be easily generalized to in-
to follow. The part ofHy, that is third-order inc(t) [the  clude higher order nonlinearities.

first term in Eq.(12)] is Hamilton’s equations for they(t),
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FIG. 3. Left: two wave-packet footprini3, in_the first Brillouin

zone(k spacg; right: the wave-packet footprinf@, in the space of
local wave vectorse=[k—k,].

ary. This is illustrated byf), in the left plane of Fig. 3, that
shows the first Brillouin zone of a 2D hexagonal lattice. The
distance betweek andk, should be judged allowing for the
wave vector wrapping at the zone boundary. We later exploit
the small size of(), relative to Qg by performing Taylor

-k,], include the parts of the photonic bands marked by the shadegleries expansions of fields lat and only retaining the most

ovals. They represent the wave packets witil, 2, and 3 and their
concomitant counterparts within the bands with negatiye

d
St =l (,7], (52)

dt

lead to coupled equations for tlog (t); keeping terms up to
those quadratic i, (t), we find

d sgr(n)
acnk(t) Iwnkcnk(t) +| g E L dk'T’ 2)n)n/rnr (k

: k'1,k')cnn[k_m(t)cnrk«t).

Recall thafk] is a zone-wrapped wave vecto(46). Higher-

(53)

significant terms of the expansions, based on the multiple-
scales analysis. To facilitate this approximate treatment, we
introduce “local” wave vectors=[k—k,], which are small
compared to the maximum width 6fg. Each wave packet
associates a differektvector for a giverk, since the central
wave vectok, enters into the definition ak. Fork e (), the

corresponding local wave vectorse (_za, where(_la is the
wave-packet footprint volume in thec space, centered

aroundr=0. We assume tha?, do not reach the boundaries

the first Brillouin zone, since the diameters@j are small.

We choose th&-space volumeg), in such a way that
different Q, and Q. do not overlap if the wave packets
belong to the same photonic bang=n,,. This condition can
be formally expressed as

order nonlinearities can be included in the dynamical equa-

tion by a straightforward extension.

I1l. WAVE PACKETS AND EFFECTIVE FIELDS

A. Wave packets in reciprocal space

We now write our electromagnetic field as a superposition
of wave packets numbered with index Each wave packet

involves Bloch modes from a single bang, and all wave

6nana,Ha([k - ka])Ha’([k - ka’]) = 5aa’Ha([k - ka])a (54)

wherell () is a “filter” function, defined as

1, for ke Q,,

() = (59)

0, for k¢ Qy,

and the conditionk e Ea is equivalent tk € Q.

vectors associated with the wave packet are close to some |n principle one could organize an arbitrary initial state of
central valuek,. We refer to these as “formal” wave packets; the electromagnetic field with the aid of these formal wave

a typical such wave packet labeled &wnly contains spatial
eigenmodesDnak(r) with k € Q,, where(), is the volume in
the reciprocal spacék spacej that is centered arounkl,

and that represents thle-space “footprint” of the wave

packets, by first completely covering the Brillouin zone with
a set of nonoverlapping volumés, for each band, identify-
ing a formal wave packet centered at ekghand then sort-
ing the different Bloch components of the electromagnetic

packet. That is, the support of each of these formal wavdield into these wave packets. In practice, of course, one is
packets is compact ik space. In Fig. 2 we shown 6 wave often interested in a one or a fephysicalwave packets,

packets in 4 different photonic bands of a 1D photonic crys-often taken to be Gaussian in form for simplicity, that are
tal by shaded ovals overlaying the parts of the bands thatentered at different wave vectors. Strictly speaking, a
correspond to the mode@nak(r) comprising those wave Gaussian wave packet will extend to wave vectors outside

packets.

any finite volume in reciprocal space, such as the volumes

Eachk-space volumé), may wrap at the boundary of the Q,. Nonetheless, in many cases of interest it is possible to

first Brillouin zoneQg if k, is sufficiently close to its bound-

define(}, large enough so that, while still a small fraction of
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the volume of the Brillouin zone, essentially the full Gauss- . aa(t), for a>0,
frll) = (@ (63

ian wave packet is contained within in. But if this is not the (-a) i\t

case, the electromagnetic field in a single physical wave o), for a<o,
packet can be divided into as many formal wave packets agnq using Eq(39) we see that

necessary to achieve a good approximation. The theory we

develop below allows for the interaction of these formal Foel®) = TLa(K)Cp g ol(D) (64)

wave packets. Propagation of a single physical wave packet . . L N
can, if necessary, be treated as the propagation and interd@' POth positive and negative this is illustrated in Fig. 2.

tion of a set of formal wave packets. Even if this is not | Ne Poisson bracket fgf(t) immediately follows:

thought necessary, and it is supposed that a given physical A o(-a') ,

wave packet can be well-approximated by a single formal [Fe(0).f e (D] = 59M(@) S Ta(sc) S(ac — ") (69)

wave packet, such a more general treatment could be imple-

mented to check the quality of the approximation.
We number the wave packets so that

The introduction of the reciprocal-space envelope func-
tions allows us to separate the field itself into distinct wave-
packet contributions. Using Eq40) and the definition of

sgr(a) = sgr(n,), (56) §2(t), the fieldD(r,t) can now be written as a superposition

of the field wave packetB(r,t),
and we include the wave packéta), whose constituent P ar Y

modes are complex conjugates of the modes forming the D(r,t) = >, D4(r,1), (66)
wave packeta, to guarantee that the electric field is real. a
These concomitant wave packets, oné-at) for each wave

packet ata, are described by the parameters where
Nca) = = N, (57) Dy(r,t) = J dK iy (DD k(1) (67)
Qg
K(-a) =~ Ka, (58  The field wave packetB,(r,t) have the obvious symmetry,
- t
T (o) (~ &) = (k). (59) D(a(r,t) =[Dy(r,0)]", (68)

We now introduce positive-index reciprocal-space enveVhich ensures the reality of the electric field.
lope functionsg?(t) that represent the contribution of the
wave packeti>0 to the field expansion coefficieaf, x(t), B. Formal wave packet dynamics
(V) = Ta(w)ay i (L) - (60) We can now turn to the dynamical evolution of these
wave packets. The part of the Hamiltonian describing linear
dynamics[Eq. (44)] is expressed in terms of the reciprocal-
space envelope function&(t) using Eq.(64),

Aoy
Ho=2 | e f 070, (69)

a v Qp

Using this definition, we can write tha,(t) as
ant) = 2 Sn Bt (- (61)
a

The zone-wrapped wave vectft—k,| in (61) reflects the
fact that, fork, close to the boundary of the first Brillouin ) - )
zone, some wave vectokof the wave packet can be located Where the summation extends to both positive and negative
on the opposite side of the Brillouin zone. a, and we have defined

The Poisson bracket fari(t),

5:"“ = wna[ka“‘]' (70)
[a5(D), (g5 (1) '] = Saa I15(K) (i~ ), (62)  writing the part of the Hamiltonian describing the quadratic

optical responsgEq. (45)] also in terms of the reciprocal-

follows from Eg.(38), taking into account the definition of espace envelope functior&(t), we find

ga(t) (60) and the nonoverlapping of the same-band wav

packetgsee Eq(54)]. This is similar to what has been done @ h , @ o
earlier[6], but there only one wave packet per photonic band H == 38,3 > dre A" Y (K ")
was considered, and thus the introduction of the filter func- VO aaa’ - 1 s
tion (55) was not necessary. As a result, there was no filter a EUPRG-U

. . . . . X 1 ! 4 )
function I1,(x) appearing in the commutation relation corre- Fictic e +A§2a~1>(t)f" OV (79

sponding to Eq(62). Our Eq.(62) is a generalization of that
work [6] necessary to treat a number of wave packets in th
same band.

As with the field expansion coefficients, it is convenient A?
to introduce reciprocal-space envelope functighg) that aaa
can accept both positive and negative wave-packet indices and

gvhere the mismatch of the central wave vectors of the wave
packetsa, a’, anda” is denoted as

= ka+ ka/ + ka//, (72)
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Y2 (' ) =T2, - (ko + 6 Wkg+ ). (73 € 2A@(-a’,-a"). With our choice of wave packets, the sum
aard over alla in Eqg. (71) can be replaced with a sum ovar
(k' &) inherit a set of symmetry properties €2(-a’,-a").
The equation of motion fof2(t), written here up to the
terms quadratic irfi(t), follows directly from Eq.(53) and
the definition offi(t) (64):

The y(aza)fa!!
from theT'?) (k”,k"); from Egs.(49) and(50) we find

nn'n”

! N T* 2 ’ r
2 (6 k)] = 520 oy~ K =), (79)

, _sgna)
a:fi(t) = |5’acfi(t) +1 "’F E dK, ‘yg)a)a//ar("
@ (= D o= 2 , , ! adt e
Yoaa(K' K') = 7(—a)a’a”(K ') = Ya(—a’)a”([K + 2Karl, 1) aea@(@ 2"
=2 - y '
= Yaar (o (1 + 2K ) = - (75) -k - Agg)a)a,,a,,K’)f?K_K,_Aiz)) Ofu®.  (77)
-a)d’a’
while the permutation symmetry Qﬁ'a"("/ i) follows di-  In this equa_tion we have omitted the zone-wrapping notation
rectly from Eq.(51) [...], assuming that the wave pack€end hencex’s) are
’ reasonably small in th&-space and that the wave-vector
. @) .
mismatchA,” _, , is also small.
Vawar (K K) = Y (K ) = Yt (= [+ 8 aa
2 . C. Effective fields and their properties
+A oK)= (76)

We now move from reciprocal space to real space and
In treating this second-order interaction, we assume thahtroduce effective fields associated with the formal wave
to good approximation the material polarization created by @ackets introduced in Sec. Il A. We define the effective field
pair of wave packets’ anda” will only affect a limited  of a wave packea as a Fourier transform of its reciprocal-
number of wave packets, the set of which we denote as space envelope functiopZ(t) or f2(t). To do this we can
A@(a’,a"). Consequently, the wave packets and @’ restrict ourselves to positiva and an analysis based on
should appear in some terms in the nonlinear Hamiltoniargi(t), using complex or Hermitian conjugates for negative-
together with the wave packeta). In most cases, every set jndex wave packets. Fa>0, then, we introduce positive-
2A@(a’,a”) contains two wave packetsthat belong to two  index effective fields,
photonic bands differing by the polarization of their modes.
Obviously, the seRl®(a’,a") is not empty if the second- ga(r.1) =f
order nonlinear interaction between the wave pacéétsnd o g
a” actually occurs. . . . .
From gformal point of view, it would be hard to achieve 1 n€ Poisson brackets involving tge(r,t) are obtained from
the self-consistency of our set of interacting wave packetihe Poisson brackets involving thg(t) (62),
without extending them to alk-vectors in all photonic T T — & /
bands. Even wit?] the assumption that each gctual wave (921,082 (", ] = e ITa(r = 17), (79)
packet in the photonic crystal is well described by the \yhere
vectors within a given formal wave packet, we would have to 1
take into account the effects of the nonlinear interaction = — ;
where the wave packet a’, anda” are combined in all M) = 8 drella(se)explise 1) (80)
different ways. That is, not onljk’ +k”] should be in some ] ) . )
Q, aeA?(a’,a") for every pair of Bloch modes with' is a “space filter function” that filters a given wave packgt
e O, andk” e Q) that participate in the second-order inter- out of allfame—band wave packets. The appearance of a filter
action, but our set of wave packets should also contain all th&unction II,(r—r’) rather than a Dirac delta function in Eq.
Bloch modes that may appear in the interaction of any wavé79) is a consequence of our division of reciprocal space into
packet containing Bloch modes with wave vectfits+k”]  a set of wave packet regions.
e Q,, and so on. In practice, of course, the wave packets that We also introduce the effective fieldg(r,t) that can ac-
become important are restricted by phase-matching consiaept both positive and negative wave-packet indees
erations. In this respect the interaction of wave packets in {
fa(r,t) =

d
== g2(vexp(in ). (78)
V87

Qp

photonic crystals resembles that of wave packets in uniform ga(r,t), fora>0,
media, except of course that in photonic crystals those phase- g-a(rt), fora<o,
matching conditions can have much richer consequences. V¥reom which it follows that
will see below how phase-matching limits the number of
wave packets we need consider; for the moment we assume K )
that those considerations restrict us in practice to a finite set. far) =]  —=ftexplir-r) (82

. . 0. V87
Note that since concomitant wave packat@nd (-a) are B
always present in pairs, and because of the symmetries difer both positive and negativa. The Poisson bracket for
cussed above, fromaeA?@(@’,a’) follows (-a) f,(r,t) follows from Eq.(79),

(81)
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[fa(r,0), fan(r', 0] = sgr(@) dua Ia(r = 1').  (83) Ho= > fdrEOa(r,t), (89)

Using the inverse Fourier transform &f(r,t), we express
the field wave packei67) in terms of the effective field:  where in the expression fduy,(r,t) we rely on the series
expansion ofw? up to the second order i,

dr’ .
D,(r,t) = f —,—sfa(r’,t) dKDna[ka+K](r)epr(— irc-r’).
V8 05 =~ _ oy :
hoa(r,t) = > fa(r,fa(r,t) +i 0

W 9f _a(r,1)
w_a(%fa(r,t)
(84) a or
: . f (D) of ) (r,1) of o(r t
Note that instead of)g we could use any volume in the —f(_a)(r,t)w> + &ML
L= . . ar' 2w, or' ar
Kk-space that containQ,, so there remains some freedom in
specifying the “kernel” of the transformation from the effec-
tive field to the actual electric field. +oe (90)

One of the reasons for introducing the effective fields
fo(r,t) is to benefit from series expansionsst0 that we
will now undertake. The idea is that a well-localizBg(r , t)
consisting of contributions from a narrow range of(67)
can be described by a smoothly varyifigr,t). This only
follows, of course, if the Bloch function@nak(r) are slowly
varying over(l,; if Q, is split at the boundary of the first ~ T
Brillouin zone, this is understood as tma[kaﬂd(r) being [oa(T, D] = hoa(1, D), (91)

slowly varying in the€l,. If €1, is small and there are no aithough it is not necessary, sintg,(r,t) and EO(—w(r,t)
points, lines, or surfaces of degeneracy that involve the band T tal her i 9. Th .
n, in ,, this can be achieved by suitably choosing the phasé[ oa(r, 1" always appear together in E@9). The approxi-

of D, () at everyk through, for example, &-p type of ~ Mmation involved in truncating EQ85) when deriving Eq.

expar?sion abouk, [14,15. With degeneracies i), that (90 cag be cr&aracterlzed" formally, in tr?e r;ultmle—scales

; o : ; ) sense, by introducing small parameters that identify the ratio

myolve the bandna the problem is more com'plllcated, we of (i)lzy to the dis?tance oF\)/er which the functioflfgr t)

will not address it here, but plan to turn to it in a future ©' “a /<®a . 0 "

communication. vary, and of the ratio ofoa’ /2w, to the square of that dis-
To see how such a series expansion can be introduced infnce,etc. We will not perform that formal multiple-scales

a description of the dynamics, we begin with the part of theanalysis here. _ o _

Hamiltonian describing the linear response. We use the ex- An approximate expression ft¢'<, following from Eq.

As we will show later, thishy,(r,t) can be considered a lin-
ear part of the averaged energy density of the electromag-
netic field, attributed to the wave pacletWe define it here

to be Hermitian,

pansion (71), can also be written as a volume integral,
=+ ol + gwgwkiki - (85) H? = J drh(r.1), (92)
where where
~ f
Wa= Onp =~ O(-a), (86) h@(rt) = - 3 D Y2, Falr O o (1) Fa(r )
aa’a":
(~a)eA@@’ a")
() _ 9ngk (i @
wy = —/ = 0y, (87) Xexplidg 1), (93
ok
a
and for yg,a,,(x’ ,K’) we have adopted the approximation
P J
i — 2kl )
wy'= —2|  =-w), etc (88) @ o D 1o _ Lo \_-»
: KoK k=k, e yaa’a”(K 'K,) = Yazar\ T §Aaa'a”’_ :_gAaa’a” = Yaarar

The second series coefficient is the group-velocity vector of (94)

Loi— (D) ; A (i) ;
the wave packe: vz=w,". The third coefficientw,” IS = 15 raas0n for using é—A(Z), . in this definition is to make
obviously symmetric with respect to the permutation of its_,, aa’al

indicesi and j. Then we can writeH, in the form of a  Yaya MOre Symmetric, so that

volume integral of the sum of the contributiohg,(r,t) from [_@ 1 = —) ©5)
separate wave packeds Yaa'a Y-a)(-a)(-a")
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) = _—f) _ _ -
’yaa a’ yaa"a’ - ya’aa” = (96) a(l’,t) = fa(l’,t)eXF(— |wat), (99)

thus simplifying our subsequent formulas. Corrections ovetherew, is a “carrier frequency” that can be chosen later for
Eq. (94 to V(a'a"(" ") can be introduced, again in a convenience. The equation of motion ﬁ:g(r t) then takes

multiple-scales anaIyS|s but we will here keep only the low-the form
(2)

est order contnbutmm e 107, a’a”(K ), under the as- ) Fr 1)
sumption that the nonlinearity is weak and its effect is at<—+va ) far,t)=—i(w,— wa)f (r,t) + Wl —8—=

most of the order of the group-velocity-dispersion term in ar'or!
Eqg.(90). The termh@(r ,t) is Hermitian because of the sym- + - +i sgr(a) 2 ;E?a)a -
metry properties oﬁﬁ,a,, (95) and (96). Note thath®(r 1) a'a":

cannot be separated into contributions from different wave a2’ a")

packets, but rather represents the contribution of the wave-

packet interaction to the averaged energy density. Xfar (1, ) o, exi(0g ~ wg — want

The equation of motion for thé,(r,t) is now obtained +|A -t (100)
either by taking a Fourier transform of the equation of mo- Cajae
tion for §2(t) (77) or from the Hamilton equation, By suitably choosings, andk,, we can eliminate some of
P 1 the terms(w,— w,), (wa—wy — wy), andA( A but cannot
afa(r,t) = g[fa(r,t),H], (97 generally eliminate all of them.

o D. - .
and it is as follows: Continuity equation

To approximately describe the energy distribution of the

<.)f9f .y, (.,)(9 fa(r,t) electromagnetic field, we introduce the effective energy den-

orl 2 “a ariorl sity consisting of the linear and nonlinear contributions de-
fined in Eqs.(90) and(93),

far,t) =—iw,fo(r,t) —w

+i Sgr‘(a) 2 ;((-E)a)aranfa'(rat)fa’/(rvt) ~ ~ ~
aa" h(r,t) = > hoa(r,t) + h(r 1), (101
aeu@(@’ a" a
><exp(|A(2 (98)  Where the nonlinearity here is only accounted for up to the
second order. The effective energy densiy,t) satisfies the
In deriving this equation of motion, we have used the expreseontinuity equation,
sion (83) for the Poisson bracket fd(r,t), which does not _
include a Diracdé-function. From the Poisson bracket the oh(r,t)
Fourier transform of the nonlinear part of the equation ac- g
quires a factor ofll(#); this is equivalent to the condition
aecA(a’,a") we impose on the summation over the Waveexactly, where the effective Poynting vects(r,t), like
packets. This condition naturally “directs” the nonlinearly h(r t), is a sum of linear contributions from separate wave
generated field to appropriate wave packets; if we wouldbackets and nonlinear “interaction” terms,
have a Diracs-function Poisson bracket, we would have to
assign the nonlinear contributions to different wave packets 31,0 = 2 Falr, ) +32(r0). (103
“by hand,” from physical and convenience considerations. a
In many cases it is convenient to introduce a slowly-Here the linear effective Poynting vector of the wave packet
varying effective fieldf(r,t), ais

(—a)a’a” r)

==V ‘3,1, (102

i 1) a)(') ww”) f-a
Hoo=t a{ ety 12t e A ™0

. 0V 9 (af(_a>(r,t) afa(r,t)) . 0V l9 - 201 ¥ (&zf(_a)(r,t) PE(r, t))

fa(r,t) + g (r,t)

W, ar) ark 4w, arlork arlork
0D [ #PF_a(r,b) aa(r,t) I —ay(r,1) PFo(r 1) - (104
4o arlark or! ok arlor! ’
a

and the part oB(r,t) arising from the quadratic interaction of the wave packets is
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E(Z)i(r,t):—% > ;;i,a,,{w [f2(r, 00 (0,0 F (0, 0) + F0 (1D F(r, ) F 0 (r,0) + £ () F0(r, D51, D] — i)

aa’a”:

(~a) @@’ a")
(1 t t
x[ a(r (1.0 l,0)+ £ (1) ( A0 g )+ 0,0 2 )”exfmg/a"'”- (169
|
Both F,(r,t) and3?(r,t) thus defined are Hermitian. We D(r,t) = Dy(r,t) + Dy(r,t) + [Dy(r,t)]" + [Dy(r,1)]T,
emphasize that with(r,t) ands(r,t) defined by Eqs(101) (108

and (103, the continuity equatioil02) holds exactly. The

same is true for the linear quantitibg,(r,t) andSy,(r,t) for
each wave packet. This means that the effective Poyntin
vector constituent$104) and (105 exactly match our trun-
cated definition of the effective energy density constituents D,(r,t) :Aanzkz(r)exp(— 2iwt). (109
(90) and(93), although Eq(103) is not simply an expansion
of §(r,t) to the same level thefn(r,t) is expanded in Eq.
(101). The effective Poynting vect®&r ,t) can be interpreted

as a flux of the effective energy densﬁyr ).

In many cases, especially for éa@pproximate interpreta- A
tion of results obtained and expressed in terms of the effec- ga(r,t) = T exp(— 2iwt), (110

tive fields, rough approximations f<j~T(r,t) and’s(r,t) suf-

and only consider the cw regime in the undepleted pump
approximation, takind,(r,t) to be a single mode with fixed
gmplltudeAz,

Here we denote the strong-wave frequency as=2v,
= Wnk, and assume that its wave vectiosllZ. The corre-
sponding effective field,

does not have any spatial dependence. For the degenerate

fice, parametric amplification in cw regime, the time dependence
of the weak wave is as follows:
~ f — .
hr)=> ' L o010 = S hanloalr O, Gi(r,t) = Ga(rexp-iwt). (111
0
2 = A comparison of this definition with Eq99) shows that we
(106) have made the amplitude time-independent by choosing the
carrier frequencyw;=w. For simplicity, we have assumed
that the weak wave is confined to exactly one photonic band
3(r ) =~ E va f( 20D = D vafiwlgar, b, n;. The central wave vectdr; of the weak-wave envelope
a>0 function is defined below.
(107) The propagation equation for the weak-wave envelope
function g;(r) is obtained from Eq(100),
where the expressions witfy(r ,t) are given for the classical 9(r) _ 2iy? t
case. These two formulas provide us with clear additive ex- °1" g ~ilop - )gy(r) + *AZ[_l(r)] exili(k,
pressions allowing us to separate contributions from different
wave packets. Recall that = wg) here is the group-velocity ~2ky) -rl, (112
vector of the wave packet where ;= wp,, and pe) —7’22)1)2( = FE12)r12n (12K1, k),
wherek= [k1+k2] By choosingk;= 2k2 k, which gives us
IV. EXAMPLES a phase- matched set &f, we eliminate the exponential

function in the last equation. We further restrict ourselves to
In this section we discuss two simple examples of opticakonsidering the case of exact frequency-matching, where
interactions governed by the quadratic susceptibility. 2w,=w,=2w. We also assume that the group velocity at the
point k; of the photonic banch; is v411Z, that could be
achieved by aligning one of the symmetry directions in the
photonic crystal along. All these assumptions simplify the

We first consider the degenerate parametric amplificatiofffoPagation equation fag(r) to
of a “weak” waveD,(r,t) in a photonic crystal in the pres-

A. Parametric amplification

o J_ . R
ence of a “strong” wav®,(r ,t). The solution is well known ﬁ—zgl(f) =iag[gi(n]", (113
[2], but the example serves to compare our work with earlier
studies. We write where
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» » » » 3 ’ | 2 could descripe the electric field oscillating with a low fre-
D  Da, > r" » fE quency that is much smaller than the spectral width of the
» » » ;\ » | 0 optical field. A description of an inhomogeneous external
" electric field may require including longitudinally polarized
as well as transverse solutions of the wave equation; this can
d, easily be done in a way similar to the introduction of the
transverse modes in this paper. In most practical cases, the
inhomogeneous electric field will be a slowly varying func-
FIG. 4. 2D photonic crystal slab, with holes drilled in a tion of the'spatial coordinates on the scale of the photonic-
triangular-lattice pattern. CryStaI_perlodaO. o _
As in our last example, the total electric field in the
electro-optic problem consists of two wave packets and their
i 2Y?A, respective conjugates. One wave packet is an optical field
ap = |agle o= ——. (114 pe jugates. Dne wave pacr P
v\V87 described by the effective field,(r,t); it has the central
wave-vectork; and the central frequencgolzwnlkl. The
other wave packet is the zero-frequency electric field with a
homogeneous field strength, that is,

If we set a boundary condition for the amplitude of the
weak wave ar=0,

01(z=0) =g o= const, (115

E
_ * =5 2 =0
we find thatg,(r) will only depend org, g,(r)=g,(2), and the Da(r,) =[Da(r, )] * = 2eon™(r) 2’ (117

solution of Eq.(113) will be as follows: wherez is the unit vector directed along the hole axes, and

01(2) =01 o cosh|ag|2) +ie'?(g; o sinh(|aglz). (116)  Eois assumed to be real. The fidlih(r,t) is proportional to

, . the z-polarized zero-frequency eigenmode,
Our result agrees with the known solutip?] if we ne- P q y el

glect all the differences that are of higher-order than the re- dnzo(r) :2/\/Elson2(r), (118
sults themselves. If2] an ad hocperturbative method was ) o

used for obtaining the coordinate dependence of the parfyyhgrenz Iabgls the lowest band. With the normalization that
metrically amplified signal. This method relies on planeWe imposed in Eq(30), the modeD;, o(r) [as well ad, o(r)]
waves, that are functions of the three spatial coordinates, biyould strictly vanish at zero frequency; a different normal-
still uses the propagation length as an extra parameter. Whil@ation factor\; is warranted for this special case. We need
sufficient for illustrating the physical processes behind thehot to identify this factor here, since it cancels in the final
parametric amplification in photonic crystals in a plane-wave'esult. The effective field for the second wave packet is pro-
approximation, the method d®] is very inconvenient for portional toEy,

describing spatially-confined wave packets. On the other E

hand, the effective-field formalism that we used here makes 01, ) = N, (119

the description of nonlinear wave-packet interactions in pho- 2

tonic crystals almost as simple as in homogeneous media. 5o that, in our particular case,

DZ(rvt) = gZ(rit)anO(r)' (120)

Another interesting example of the second-order nonlin- Sincek, is the fixed external driving field, we only have

ear interaction of wave packets is the electro-optic ef'fect,one equation of motion, that follows from E(R8):

B. Electro-optic effect

where one of the participating wave packets is in fact a con-¢ . 2agy(r,t) i dP0(r,t)
. . . . . _ (rt):_| (rt)_ (')1—"_’__ ('J)#.F...
stant electric field—or an electric field oscillating with a very mgl , w10,(T, w71 o 2“’1 arigr]
low frequency compared to the optical frequencies—whose
amplitude is generally position-dependent. This kind of non- + 21(N2 721120941, DEo. (121

linear optical interaction is always phase-matched, so the cal-

culations are simpler and employ fewer approximations thari oM this equation, we conclude that the introduction of the
in more general scenarios. homogeneous electric field, effectively amounts to a cor-

As a practical example, we consider a 2D GaAs photoni¢€ction
cry;tal, where hples of raghu% are drilled in a tnan.gular- Awgy= - Z(NZT’EE)]_)lz)EO (122
lattice pattern with the period, (Fig. 4). The sample is of a
finite thicknessd, in the direction of the holes axes, where to the photonic-band frequenay,. Figure 5 illustrates the
dy> g is large enough that we can still consider the sampleelectro-optic frequency shifAwg, for the 1st and 4th TE-
and its photonic bands in the approximation of an infinitelypolarized modesthat is, the modes witldnlkl(r) 17; bands
thick 2D photonic crystal. In the simplest case that we de-are numbered in order of frequendi@s the 2D sample with
scribe below, the constant electric field applied to the sampla triangular lattice of holes; for these bands no degeneracy
is directed along the hole axes, having a homogeneous fielcbncerns arise away from tHe point. In areas of the first
strengthE,. A straightforward generalization of the problem Brillouin zone with positive values ofAw., We use solid
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FIG. 5. Normalized frequencies;ay/c [(a), (b)] and the respec-
tive electro-optic band-frequency shiffswg, [(C), (d)] of the 1st
[(@), (c)] and 4th[(b), (d)] TE photonic bands plotted Vs, in the
first Brillouin zone of a 2D photonic crystal with a triangular lattice
of holes drilled in a GaAs sample.

contour lines, while for negativAw,, we use dotted contour

PHYSICAL REVIEW E 70, 066621(2004)

inducing optical birefringence, so the plots df,, in Fig. 5
exhibit lower symmetry than the symmetry of the modes.

The approach to calculatijw,, according to Eqs(122)
and(123) may be described as a perturbative method, where
we find the frequency change using a fixed basis set of pho-
tonic modes, and(i(zz.)EO is the small parameter. Indeed, if we
take a small variation of Eq35) that arises from changing
&jj :nzé,j by Zszzj)Eo, then use Eq922) and(23), and finally
integrate byk’ over the first Brillouin zone and sum ovef,
we will get an expression fakwg, equivalent to Eqe122)
and (123). As it is common in the perturbation theory, the
variation in the modegD,,(r),B(r)) does not affecty, in
the first approximation, that is, we will have the sat@,,
whether we fix the modes, when varyiag, or not. Techni-
cally, this results because the changevjp arising from the
variation inD,(r) in Eq. (35) is equal in the absolute value
but opposite in direction to the change arising from the varia-
tion in By (r).

We can also find\w,, by calculating the shift of the pho-
tonic band frequencies, arising when we change the dielec-
tric tensor of GaASsij:nzé,j by an electric-filed induced
tensor &fzzj)Eo [cf. Eq.(6)]. The change in the dielectric ten-
sor leads to a change in the photonic band structure, and we
compute the difference between the mode frequencies of the
modified and original band structures. We have shown by
numerical calculations that for small electric fiel@;g(zzj)E0
<1) the frequency shift is very close to the shift computed

lines. The refractive index of GaAs was taken to be 11-4according to Eqs(122) and (123); the difference only be-

which approximately corresponds to the vacuum wavelengt
A=1.5um, and the relative hole radiug/a;=0.332 that
corresponds to the “air-fill factor” of 40%. We take(rj?ﬁo
=0.01 and used the relatiqi?) to expressrg' in terms of
&(ﬁ) In GaAs, which has theincblenddattice structure and

43m point symmetry group, both tensors have 6 equal non
zero Cartesian components that are obtained fxé and

IY* using all permutations of the tensor indices.
crystallographic axes of GaAs is directed aldngwo others
are aligned with thd’K and I'M directions of the photonic

crystal lattice. The effective quadratic susceptibiw)mz,

which is responsible for the electro-optic interaction, is ex-

pressed in a straightforward manner in terms of the photoni
modes and the quadratic susceptibiﬂfﬁ,n,,(r) using Egs.
(99, (73), (48), and(118):

1
NZ?’(.E)l 12~ f
(-1 ﬁso v

cell

ar .. . ,
U PO (00T oo P(0)dh (1),

(123

We computed this integral numerically, with the photonic
modes obtained using the MIT Photonic-Bands packadje
Note that Eq.(121) and (123) can be easily generalized to
include the dispersiotk-dependenceof 7’91)12- The result-
ing formulas are much simpler if written in the reciprocal
space.

The symmetry of the photonic modes in the first Brillouin

zone is determined by the symmetry group of the photonicfield close toE2"

Romes significant a,ti(z

JEp=0.1.

We note, however, that the method of computing,, by
treating the electro-optic effect as a quadratic nonlinear in-
teraction, as outlined in Eqg122) and(123), is much more
powerful, since it can be easily generalized to an inhomoge-
neous distribution of the external electric field. This is im-
portant to properly describe controlling of light in photonic

ne of thecrystals with a localized electric field, which has possible

applications in building photonic devices. We defer investi-
gation of such more complex examples to a later publication.
Finally, we give some estimates of the electro-optic fre-
quency shift in GaAs. The electro-optic coefficient of GaAs,
L~1.5X 102 m/V [17], is connected with the quadratic
susceptibility tensor used in this paper a,ggg:szr; the
electric field applied to the sample cannot exceed the
electric-breakdown threshold of the di,, ~3x 10° V/m,
which is more than an order of magnitude less than the
electric-breakdown threshold of GaAs. This means that the
highest achievable value o,fi(zz.)Eo is of the order of 3
X 1074, which is in the range where our first-order perturba-
tion approach forAw,, works well. SinceAw,, scales lin-
early withEy, we can estimate from Fig. 5 that the maximum
relative change in the photonic band frequendes./
that corresponds to the highest achievable electric field is of
the order of 3<107°. Such small changes in the photonic
band frequencies can only be realistically detected at the
band edge, as was done recently in a four-wave mixing pro-
cess[16]. Even in that case and with the constant electric
maxe SUCh measurements would be at the limit

crystal lattice, since the dielectric tensor of GaAs is isotropic.of experimental techniques. To enhance the effect, one could
Applying the electric field lowers the symmetry of GaAs, use a material with larger electro-optic coefficient. Another

066621-13



S. N. VOLKOV AND J. E. SIPE PHYSICAL REVIEW E70, 066621(2004

approach would be to fill the holes of the photonic crystalwhich constitute a natural way to describe the average en-
with a low-index material with much higher electric- ergy distribution and flux of the electromagnetic field in this
breakdown threshold than that of the air, and apply a strongeébrmalism. The continuity equation that these new quantities
electric field. satisfy allows for a convenient way of checking the consis-
tency and precision of numerical computations based on the
dynamical equations for the effective fields.
V. CONCLUSION In the formulas presented in this paper, we have only
Using an effective-fields approach introduced earlier for€tained terms involving the quadratic optical susceptibility.

single-wave-packet configuratiof], we have generalized Still: the extension of our theoretical approach to higher-
this useful and convenient formalism to describe nonlineaPfder susceptibilities is very straightforward. The examples

interactions of multiple wave packets. This generalization i Nonlinear optical interactions of wave packets we pre-
not quite straightforward, and involves a modification to theSented here are deliberately chosen as simple as possible to

previously used definition of the wave packet itsef by illustrate the way the formalism_works and ho_w it can be

introducing the filter function$I,(s), which allows for mul-  US€d; more complex problems will become subjects of sepa-

tiple wave packets within the same photonic band. While thid@t€ Papers.

chang_e in the definition of thg effective fields Iea_ds to a more ACKNOWLEDGMENTS
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